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Abstract

Background: Oxidative stress induced by aluminum (Al) toxicity leads to the dysfunction of the hematopoietic system. Detoxifying
by means of common chelators causes many side effects. Therefore, researchers have been trying to find safer treatments.
Objectives: This study aimed to evaluate the effects of Saccharomyces boulardii and S. boulardii enriched with selenium (Se) on Al-
induced toxicity in rats.
Methods: Female rats were divided into 6 groups: (A) Control group, (B) S. boulardii treatment group, (C) enriched S. boulardii treat-
ment group, (D) Al-infected group, (E) S. boulardii treated and Al-infected group, (F) enriched S. boulardii treated and Al-infected
group. At the end of the treatment period, blood samples were taken directly from the hearts of rats in order to measure hemato-
logical parameters, total antioxidant capacity (T-AOC), malondialdehyde (MDA) concentrations, iron, and total iron binding capacity
(TIBC).
Results: Results revealed significant increases of white blood cells (WBC), red cell distribution width (RDW), TIBC and MDA in group
D as compared to the control group and significant reductions of these factors in groups E and F as compared to group D. T-AOC,
iron, and mean corpuscular volume (MCV) decreased in group D as compared to the control group, but significantly increased in
groups E and F as compared to group D. Other observed changes were not statistically significant.
Conclusions: It appears that S. boulardii partly reduced the harmful effects of Al toxicity, especially when enriched with Se due to
its antioxidant properties. Further studies are needed in this area.
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1. Background

Aluminum (Al) is the third element in the earth’s crust
and the most abundant metal (after iron and calcium)
widely distributed in the environment (1). This metal can
be found in almost all food crops such as corn, yellow
cheese, tea, salts, herbs, and spices. In addition, it is found
in the mixture of a group of drugs and applied in drinking-
water treatment (2). Thus, the entire population is largely
exposed to it (1).

Al causes a wide range of toxicity in the nervous,
hematopoietic, skeletal, respiratory, and immune systems
(3, 4).

By non-controlled production of free oxygen radicals,
Al leads to lipid peroxidation resulting in damage to cellu-
lar membranes and mitochondrial phospholipids (5). This

metal consolidates superoxides by forming AlO2
-, and facil-

itates biological oxidation with the formation of hydrogen
peroxide Fe2+. Also, by producing superoxide anions via
the Fenton reaction by converting Fe3+ to Fe2+, it changes
antioxidant enzyme activities in the cells. So, Al cytotoxic-
ity is known by its role in stimulating oxidative stress (6).

Some chelators such as deferoxamine (DFO) and de-
feriprone (DFP) have been found to decrease Al levels in tis-
sues and the oxidative stress caused by it; but these com-
pounds create inevitable side effects like agranulocytosis,
anorexia, and liver fibrosis (1).

Today, the protective effects of natural products with
antioxidant properties, such as ginger, saffron, and honey,
have been investigated in aluminum toxicity (7), but few
studies have been carried out on the effects of probiotics
on aluminum toxicity.
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Probiotics are living microorganisms that exert their
useful effects on the health of the host if consumed ade-
quately. These microorganisms are a part of the normal
flora of the digestive system. Lactobacillus, bifidobacteria,
and a group of yeasts are considered the most important
probiotics. Destroying pathogens, producing antimicro-
bial compounds, improving the intestinal microbial bal-
ance, enhancing lactose digestion, as well as absorbing
minerals such as calcium and iron are the characteristic of
probiotics (8-10).

Probiotics are also beneficial for the human body be-
cause they produce vitamin-like compounds including B-
vitamins (11). Some evidence has demonstrated that probi-
otics increase the intestine’s iron absorption ability by cre-
ating an acidic environment (10).

Protection against oxidative stress and the ability to de-
crease the risk of accumulation of reactive oxygen metabo-
lites have also been reported among the positive effects of
probiotics (12).

For example, the increased activity of a group of antiox-
idant enzymes, particularly superoxide dismutase, was ob-
served in the liver and kidneys of cadmium-infected rats af-
ter consuming a dietary intake of Lactobacillus plantarum
and Bacillus coagulans (13). In another similar research,
the strengthening of the antioxidant system was seen in
mercury-infected rats after taking these two probiotics
(14).

The antioxidant mechanism of probiotics could be re-
lated to free oxygen radicals scavenging, removal of metal
ions, inhibition of oxidant compounds, and prevention of
their production (12).

Selenium (Se) is an essential trace element in the hu-
man diet showing the same antioxidant properties as pro-
biotics. This metal micronutrient is the major constituent
of selenoenzymes such as glutathione peroxidase (GPx3,
GPx2), thioredoxin reductase, and selenoproteins P (15),
which protect animal cells from oxidative damages (16).

Se is available in both organic and inorganic forms.
Studies have shown that the organic form of Se has higher
absorption potentials and less toxicity than its inorganic
form. Therefore, using bioseleniums such as selenome-
thionine, probiotics, and Se-enriched plants as dietary
supplements have been considered (17). A study by El-
Bayoumy and colleagues carried out on a group of adult
men showed that consuming Se-enriched yeast not only
improved testosterone secretions, but also significantly in-
creased the level of reduced glutathione in their blood as
compared to the control group, which indicated a decline
of oxidative stress levels in their bodies (18).

As the positive impacts of Se dietary supplements and
probiotics in reducing oxidative stress levels by strength-
ening the antioxidant defense system have been specified

(19), the present study investigated the likely impact of the
Saccharomyces boulardii and S. boulardii enriched with Se
against the AlCl3-induced toxicity in rats.

2. Methods

Thirty-six adult female Wistar rats weighing 120 - 140 g
each were obtained from the animal house of the Islamic
Azad University of Falavarjan and kept under favorable en-
vironmental conditions of 20 - 25°C, humidity 53± 2%, and
12 hours light/dark period. After a week, in order to com-
promise with the environmental conditions, they were al-
located into 6 groups as follows:

A. Injection control group: 1 cc intradigestive injec-
tion of distilled water for 5 weeks (every other day) and in-
traperitoneal injection of 0.5 cc distilled water at the end
of the third week.

B. S. boulardii treatment group: 1 cc intradigestive injec-
tion of yeast suspension (1.5× 108 CFU/mL) (20) for 5 weeks
(every other day) and intraperitoneal injection of 0.5 cc dis-
tilled water at the end of the third week.

C. Se-enriched S. boulardii treatment group (sodium se-
lenite): 1 cc intradigestive injection of yeast suspension en-
riched with Se for 5 weeks (every other day) and intraperi-
toneal injection of 0.5 cc distilled water at the end of the
third week.

D. AlCl3-infected group: 1 cc intradigestive injection of
distilled water for 5 weeks and intraperitoneal injection of
0.5 cc of AlCl3 at the end of the third week.

E. S. boulardii treated and AlCl3 infected group: 1 cc
intradigestive injection of yeast suspension (1.5 × 108

CFU/mL) for 5 weeks (every other day) and intraperitoneal
injection of 0.5 cc of AlCl3 (4 mg/kg) (21) at the end of the
third week.

F. Se-enriched S. boulardii treated and AlCl3 infected
group: 1 cc intradigestive injection of yeast suspension en-
riched with Se for 5 weeks (every other day) and intraperi-
toneal injection of 0.5 cc of AlCl3 at the end of the third
week.

In order to enrich the yeast with Se, 90 mL of sodium
selenite (10 mg/mL) was added to 100 cc of suspension pre-
pared from yeast and incubated for 48 hours at 37°C. After
incubation in the 3000 rpm, it was centrifuged for 15 min-
utes and washed with sterile normal saline twice to remove
excess selenium. Then, the Se-enriched yeast suspension
(1.5 × 108 CFU/mL) was prepared from the resulting sedi-
ments (22).

Finally, at the end of the treatment period, the rats
were weighed and blood samples taken straight from their
hearts.
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The number and index of blood cells (CBC) were mea-
sured using the cell counter device Mindray BC 6800
model.

The amount of serum iron was calculated according to
the instructions of Artiss and colleagues (23). The modified
method of Goodwin and colleagues (24) and TIBC assay kit
made by Pars Azmun Company were used to measure TIBC
(total iron binding capacity).

The blood’s total antioxidant capacity (T-AOC) was ana-
lyzed with the ELISA Reader method using the T-AOC assay
kit of EASTBIOPHARM Company.

Malondialdehyde (MDA) levels were evaluated using
the thiobarbituric acid (TBA) method based on the detec-
tion of MDA-TBA levels at the wavelength of 532 nm accord-
ing to the instructions of Qiao and colleagues (25).

2.1. Statistical Analysis

The data was analyzed as mean ± standard deviation
using the SPSS-18 statistical software.

3. Results

According to Table 1, a significant increase in the num-
ber of white blood cells (WBC) was seen in the group ex-
posed to AlCl3 as compared to the control group (P≤0.05).

WBC numbers decreased significantly (P ≤ 0.05) in
both infected groups treated with S. boulardii and Se-
enriched S. boulardii as compared to the Al-infected group.

There were no significant differences in the platelet
numbers between treatment groups as compared to the
control group.

Also, no significant differences were observed in the
number of red blood cells, indices MCH and MCHC,
hemoglobin concentrations, and hematocrit percentages
among the groups; but, in the AlCl3-infected group, MCV
(mean corpuscular volume) decreased significantly (P ≤
0.001) and RDW (P ≤ 0.05) increased.

These two parameters in both infected groups treated
with S. boulardii and Se-enriched S. boulardii increased re-
spectively (P≤0.05) and decreased (P≤0.05) as compared
to the Al-infected group.

As shown in Figure 1, iron concentrations in the AlCl3-
infected group had a significant reduction (P ≤ 0.05),
while it increased significantly in the S. boulardii and en-
riched S. boulardii treatment groups as compared to the
control group (P ≤ 0.001).

Iron concentrations significantly increased in both in-
fected groups treated with S. boulardii and Se-enriched S.
boulardii (P≤0.01 and P≤0.05, respectively) as compared
to the Al-infected group.

As shown in Figure 2, TIBC in the AlCl3-infected group, S.
boulardii treated and AlCl3 infected group, and Se-enriched

500

450

400

350

300

250

200

150

100

50

0

TA
O

C
, U

/m
L

Contr
ol

Sacaro

Sacaro-Sele
AIC

I3

AIC
I3

-Sacaro

AIC
I3

-Sacaro-Sele

Figure 1. Comparison of serum iron concentrations between experimental groups.
The results are expressed as mean ± SD. The asterisks indicate the significance lev-
els of experimental groups as compared to the control group and # represents a
comparison of the two last groups with the Al-infected group. Levels of significance
values are *P ≤ 0.05, ***P ≤ 0.001, #P ≤ 0.05 ##P ≤ 0.01.
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Figure 2. Comparison of serum TIBC concentrations between experimental groups.
The results are expressed as mean ± SD. The asterisks indicate the significance lev-
els of experimental groups as compared to the control group and # represents a
comparison of the last two groups with the Al-infected group. Levels of significance
values are **P ≤ 0.01, ***P ≤ 0.001, ###P ≤ 0.001.

S. boulardii treated and AlCl3 infected group showed signif-
icant increases (P ≤ 0.001 and P ≤ 0.01, respectively).

TIBC significantly declined (P≤0.001) in both infected
groups treated with S. boulardii and Se-enriched S. boulardii
as compared to the Al-infected group.

Also, as shown in Figure 3, T-AOC in the AlCl3-infected
group, S. boulardii treated and AlCl3 infected group, and Se-
enriched S. boulardii treated and AlCl3 infected group sig-
nificantly declined as compared to the control group (P ≤
0.001, P ≤ 0.01 and P ≤ 0.05, respectively).

Significant increases of this parameter were seen in
both infected groups treated with S. boulardii and Se-
enriched S. boulardii as compared to the Al-infected group
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Table 1. Results of the Effects of Saccharomyces boulardii and S. boulardii Enriched with Selenium on Hematological Parameters in Aluminum Toxicity Induced in Ratsa , b

Parameter
Experimental Groups

Control S. boulardii Se-Enriched, S. boulardii AlCl3 AlCl3 -, S. boulardii AlCl3 -, Se-Enriched, S.
boulardii

WBC, 103 /µL 7.33 ± 0.803 7.49 ± 2.253 7.53 ± 0.787 9.88 ± 1.370* 7.08 ± 1.054# 6.57 ± 1.436#

PLT, 103 /µL 7.24 ± 80.011 7.36 ± 40.784 7.59 ± 118.740 7.65 ± 60.384 6.46 ± 44.777 7.95 ± 64.700

RBC, 106 /µL 8.27 ± 0.450 8.23 ± 0.387 7.94 ± 0.539 7.92 ± 0.482 8.29 ± 0.535 8.17 ± 0.495

MCV, fL 57.15 ± 1.573 57.15 ± 1.535 55.88 ± 1.858 50.65 ± 3.083*** 58.25 ± 2.630# 54.88 ± 2.451#

MCH, pg 17.53 ± 0.338 17.46 ± 0.706 17.26 ± 0.747 17.33 ± 0.393 18.23 ± 0.592 16.86 ± 0.659

MCHC, g/dL 31.3 ± 0.729 30.56 ± 0.612 30.88 ± 0.435 30.9 ± 0.579 31.28 ± 0.775 30.71 ± 0.435

RDW, % 13.68 ± 0.426 14.43 ± 0.952 14.4 ± 0.764 16.8 ± 3.343* 14.28 ± 0.487# 15.8 ± 1.660#

HG, g/dL 14.46 ± 0.628 14.38 ± 0.444 13.65 ± 0.417 13.9 ± 0.583 14.96 ± 0.520 13.8 ± 1.138

HCT, % 46.85 ± 1.793 47.06 ± 1.501 43.93 ± 1.774 45.75 ± 0.564 47.38 ± 0.970 44.9 ± 3.834

Abbreviations: MCV, mean corpuscular volume; RDW, red cell distribution width; WBC, white blood cells.
aValues are expressed as mean ± SD.
bThe asterisks indicate the significance levels of experimental groups as compared to the control group and # represents a comparison of the last two groups with the
Al-infected group. Levels of significance values are *P ≤ 0.05, ***P ≤ 0.001, #P ≤ 0.05.
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Figure 3. Comparison of serum T-AOC concentrations between experimental
groups. The results are expressed as mean ± SD. The asterisks indicate the signifi-
cance levels of experimental groups as compared to the control group and # rep-
resents a comparison of the last two groups with the Al-infected group. Levels of
significance values are *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, #P ≤ 0.05 ##P ≤ 0.01.

(P ≤ 0.05 and P ≤ 0.01, respectively).

As shown in Figure 4, MDA in both the AlCl3-infected
group and AlCl3 infected group treated with S. boulardii in-
creased significantly as compared to the control group (P
≤ 0.001 and P ≤ 0.05, respectively).

Malondialdehyde levels decreased in both infected
groups treated with S. boulardii and Se-enriched S. boulardii
as compared to the Al-infected group (P ≤ 0.05 and P ≤
0.01, respectively).
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Figure 4. Comparison of serum MDA concentrations between experimental groups.
The results are expressed as mean ± SD. The asterisks indicate the significance lev-
els of experimental groups as compared to the control group and # represents a
comparison of the last two groups with the Al-infected group. Levels of significance
values are *P ≤ 0.05, ***P ≤ 0.001, #P ≤ 0.05 ##P ≤ 0.01.

4. Discussion

In the present research, the average number of
platelets, RBC and its indices (MCH, MCHC), hemoglobin
concentrations, and hematocrit percentages did not show
any significant changes in the experimental groups as
compared to the controls; whereas, the MCV (mean cor-
puscular volume) and RDW (red cell distribution width) in
the Al infected group have shown significant decreases and
increases, respectively. Changes in these two factors are
directly related to the type of anemia. MCV reductions and
RDW increases can be seen in heterogeneous microcytic
anemia, which includes iron deficiency, S β-thalassemia,
hemoglobin H, and red cell fragmentation (26). In a
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research conducted by Jacob and colleagues, increased
blood lead levels apart from a slight increase in RBC led
to reductions in some blood parameters such as MCV,
especially in the girls (27). Bakour and colleagues reported
significant reductions of MCV because of Al exposure (7).
In the present study, MCV reductions in AlCl3-infected
groups suggest that Al likely caused anemia. RDW changes
above normal levels may indicate liver disease, anemia,
and nutritional deficiencies. This parameter will increase
in all types of anemia, including iron deficiency anemia;
when its rates go up it implies anisocytosis (28). RDW rises
in the AlCl3 exposed group increases the risk of anemia
caused by Al. In both AlCl3-infected groups treated with
S. boulardii and enriched S. boulardii, significant increases
of MCV and decreases of RDW were found as compared
to those in the AlCl3-infected group. We suggested that
S. boulardii and enriched S. boulardii probably prevented
anemia resulting from Al infection.

Continuing our study, iron and TIBC levels were also
compared among the experimental groups due to the for-
mation risk of iron deficiency anemia.

Iron concentrations decreased significantly in the
AlCl3-infected group while it increased significantly in
both S. boulardii and enriched S. boulardii treatment
groups. Caramelo and colleagues declared that microcytic
anemia caused by Al in dialysis patients with long-term
treatment that microcytosis created by the Al was due to in-
sufficient iron in most cases (29). In a study by Chmielnicka
and colleagues, normocytic anemia was observed in mice
poisoned with aluminum chloride. They found a direct re-
lationship between the dose of metal and serum iron con-
centrations, blood parameters, and changes in the activity
of enzymes involved in heme biosynthesis (21). Mahieu and
colleagues (30), and Farina and colleagues (31), reported
lower levels of serum iron in separate studies due to Al ex-
posure. A reduction in serum iron levels due to Al exposure
can be attributed to the effects of Al on iron movement at
various levels, poor absorption of iron in the intestine, and
interference in iron cellular absorption (29). Significant in-
creases in iron concentrations in both treatment groups
probably reflect the ability of S. boulardii and Se-enriched
S. boulardii to produce vitamin B12 with probiotics (11) or an
increased intestinal absorption of iron (10).

Serum iron levels in both infected groups treated
with S. boulardii and enriched S. boulardii as compared
to the AlCl3-infected group showed significant increases.
Increased serum iron levels under the influence of S.
boulardii, especially when enriched with Se, could have had
a compensatory effect on serum iron reductions caused by
Al.

Based on some available evidence, probiotics can pro-
mote iron absorption by creating an acid environment,

convert ferric iron to ferrous iron, reduce phytase levels, as
well as produce a variety of B vitamins, including vitamin
B12 (32, 33). This is why a group of researchers has recom-
mended the daily consumption of probiotic-containing di-
ets for anemic people (10, 34).

Furthermore, despite insufficient studies on the im-
pacts of Se-enriched yeast on anemia, it was clearly demon-
strated that due to the performance of selenoproteins, Se
causes a reduction of reactive oxygen species (ROS) lev-
els indirectly and prevents the hemolysis of erythrocytes
membrane lipids and proteins. Thus by maintaining the
survival of these cells it prevents anemia (35).

TIBC, or total iron binding capacity, shows the maxi-
mum amount of iron that can be connected to transfer-
rin. Increased TIBC is a symptom of iron deficiency anemia
(36). TIBC concentrations increased in the AlCl3-infected
group as compared to the control group. Significant TIBC
increases along with serum iron decreases in the AlCl3-
infected group confirm the risk of iron deficiency anemia
in this group.

Although there were significant increases in TIBC in
both AlCl3-infected groups treated with either S. boulardii
or with Se-enriched S.boulardii, this increase was lower
than that in the AlCl3-infected group.

Therefore, highly significant decreases in this factor
were observed in both groups by comparing their TIBC lev-
els with that of the AlCl3-infected group. So, it can be con-
cluded that both S. boulardii and enriched S. boulardii pre-
vented the adverse effects of Al on serum iron surfaces to
some extent but not completely.

In the present research, WBC increased significantly in
the AlCl3-infected group; however, it showed no significant
differences in other experimental groups as compared to
the control group. In line with our results, Kalaiselvi and
colleagues showed that long exposures to Al could result
in an increase in the number of WBC as compared to the
control group (37). This suggested that WBC increases may
be either associated to immune responses or protective re-
actions against oxidative stress induced by Al. In fact, lym-
phopoiesis stimulation or abundant releases of lympho-
cytes from lymphomyeloid tissues under the stress of tox-
icity may result in an increase in WBC. Mugahi and col-
leagues had observed leukocytosis after lead infection in
rats and reported that it was due to increased numbers of
lymphocytes, neutrophils, and monocytes (38).

Morsy and colleagues also found significant increases
in white blood cells after the exposure of rats to aluminum
oxide (AL2O3) (39).

It seems that increases in WBC are caused either by an
inflammation in the body or the induction of oxidative
stress by AlCl3.

A close connection exists between inflammation for-
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mation and induction of oxidative stress in the body-that is
via immune system stimulation upon the entrance of for-
eign agents into the body; immune cells mobilize and se-
crete various inflammatory cytokines such as interleukin-
6 and the tumor necrosis factor, which in turn leads to ROS
release and then oxidative stress induction in the body (40,
41).

So, in this study, reduced amounts of white blood cells
in both Al-infected groups treated with S. boulardii and en-
riched S. boulardii as compared to the infected group that
was not treated can indicate the beneficial effects of this
probiotic, especially in Se-enriched form, on modulating
the host immune system function because of its antioxi-
dant function.

Yu and colleagues reported that Lactobacillus plan-
tarum CCFM639 exerts its protective effects on inflamma-
tion and Al-induced oxidative stress by preventing the
activities of oxygen free radicals and inflammatory cy-
tokines, including tumor necrosis factor alpha (TNF-α),
interleukin-1β (IL-1β), and interleukin-6 (IL-6), reducing
MDA levels, and increasing the activities of SOD and CAT
(42).

A group of researchers has shown that both probiotics
and Se are able to prevent the induction of oxidative stress
by eliminating oxygen free radicals and metal ions, and
also protect the body against the adverse effects of heavy
metals with their antioxidant properties (12, 43, 44).

It was mentioned earlier that oxidative stress induc-
tion is the symptom of heavy metals toxicity. Therefore,
the T-AOC and MDA levels were compared between groups.
In the AlCl3-infected group, significant reductions in the
T-AOC levels and significant increases in MDA concentra-
tions were observed which could be due to the oxidative
stress induced by Al. In line with this consistency, in their
research Sargazi and colleagues attributed kidney damage
and increased MDA levels in Al toxicity to non-controlled
production of free oxygen radicals in the cells and tissues
(5). In another study, lipid peroxidation as well as reduced
glutathione levels and activities were observed in the re-
nal tissues of rats after long exposures to aluminum lac-
tate (45). Increased levels of MDA caused by Al toxicity has
been proved in other research (25, 46, 47). This is consis-
tent with the results of the present study and confirms the
induction of oxidative stress because MDA is a marker for
lipid peroxidation measurement and oxidative stress eval-
uation (1). A team of researchers believes that Al generates
large amounts of free oxygen radicals in processes like the
Haber and Fenton processes, which in turn cause oxidative
damages to the tissues and weaken the body’s antioxidant
defense system by increasing the oxidation of important
biomolecules and peroxidation of cell membranes (48-50).

In the present study, although decreased T-AOC and in-

creased MDA levels were observed in both AlCl3-infected
groups treated with S. boulardii or enriched S. boulardii,
these changes were not as large as those of the AlCl3-
infected group.

As compared to the Al-infected group in both S.
boulardii and enriched S. boulardii treatment groups, MDA
and T-AOC levels significantly decreased and increased, re-
spectively. However, these changes were more significant
in the S. boulardii treatment group. It seems that S. boulardii
and selenium synergistically declined oxidative stress lev-
els due to their antioxidant functions, but their impact was
not strong enough to thoroughly overcome the induction
of oxidative stress caused by Al toxicity.

Probiotics are able to scavenge free oxygen radicals, re-
move metal ions, inhibit oxidant compounds and prevent
their production (12). Yu and colleagues reported that the
antioxidant properties of probiotics, including Lactobacil-
lus plantarum, could reduce oxidative stress caused by Al
and thereby reduce its toxicity (1). In another study, by
inhibiting oxidative stress through reducing free oxygen
radicals and lipid peroxidation, Se supplements led to the
reduction of kidney damage in rats which had been ex-
posed to gentamicin (43). Ghorbel and colleagues reported
in their study that Se supplements were not only able to
reduce oxidative stress levels by restoring the antioxidant
status in AlCl3-exposed mice, but they were also effective
in the prevention of liver damage because of their antiox-
idant properties (19). In a similar study, El-Demerdash ob-
served reduced levels of free radicals and cholesterol in ad-
dition to increased amounts of glutathione-S-transferase
and total protein after taking selenium supplements in or-
der to deal with Al toxicity (51).

Studies on the positive effects of Se-enriched probi-
otics as compared to probiotics alone are limited; but ac-
cording to facts, both probiotic and selenium have antiox-
idant properties. It seems that a combination of these two
factors had synergic effects on dealing with Al toxicity as
compared to the consumption of probiotics alone. This
was also proved in a comparative study by Shi and col-
leagues who showed that using organic Se supplements
(yeast enriched with Se) in the diet of pregnant Taihang
black goats had been more effective on their antioxidant
status, hormonal secretions, and hematobiochemical pa-
rameters than consuming its mineral supplements (52).

According to conducted research, Se-enriched yeast
possesses characteristics similar to those of selenomethio-
nine which is essential for the body, but is not made by the
body and must be supplied in dietary sources (53, 54). So,
Se-enriched yeast can be used as a precursor for the synthe-
sis of selenoproteins that are antioxidant enzymes and pre-
vent cellular damages caused by the activities of free radi-
cals (55).
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4.1. Conclusions
Obtained results in this study indicated that due to

its antioxidant properties and potential intestinal iron ab-
sorptions, S. boulardii prevents the decline of serum iron
concentrations and oxidative stress induction caused by Al
toxicity to some extent. Since Se is an essential element for
the proper function of some antioxidant enzymes, using it
with this probiotic may have had synergistic effects on the
results. However, more studies, including increased treat-
ment durations, doses, and analysis of other oxidative and
anti-oxidative factors are needed to confirm the results.
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