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Abstract

Background: Human bocavirus (HBoV) is found worldwide and can infect the respiratory and gastrointestinal tracts of infants and
children.
Objectives: The aim of the present study was to characterize the complete genome of a new HBoV2A strain isolated from a patient
in Korea with gastroenteritis.
Methods: Viral genomic DNA was extracted from an HBoV-positive stool specimen isolated from 3-year-old female with gastroen-
teritis. Entire coding sequences were analyzed using a newly designed set of primers in the conserved regions in 2017.
Results: The full-length genome was 5,107 bp long. Phylogenetic analysis based on the complete genome sequence, including the
three open reading frames (ORFs), indicated that CUK18 belonged to the HBoV2A genotype. The CUK18 strain showed the highest sim-
ilarity with strain Nsc10-N386 isolated in Russia. Analysis of the ORF3, which encodes the viral capsid proteins VP1 and VP2, found that
amino acid sequences corresponding to the three-fold-symmetry-related monomer were frequently substituted, a distinguishing
feature of this specific genotype.
Conclusions: Results of this study may provide valuable information for HBoV epidemiology studies and vaccine development.
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1. Background

Human bocavirus (HBoV) is a recently identified virus
of the family Parvoviridae, subfamily Parvovirinae, genus Bo-
cavirus (1, 2). Human bocavirus is a small, non-enveloped
virus (3), and the genome is composed of a linear, single-
stranded DNA molecule of approximately 5,300 bp (4).
Three open-reading frames (ORFs) have been identified in
the HBoV genomes. Open reading frame 1 encodes the non-
structural (NS) 1 protein, a multifunctional protein that
participates in DNA replication, apoptosis, and gene trans-
activation. Open reading frame 2 encodes an additional
NS protein, nuclear phosphoprotein (NP) 1, which plays a
role in the expression of viral capsid proteins (5) and is
involved in viral DNA replication at the replication origin
(6). Open reading frame 3 encodes the two structural viral-
capsid proteins (VP) 1 and 2, which are generated through
alternative splicing events.

Human bocavirus are classified into four main geno-
types: HBoV1 (7), HBoV2 (8), HBoV3 (2), and HBoV4

(9). HBoV2 can be further subdivided into two variants,
HBoV2A and HBoV2B (10). Human bocavirus 1 is commonly
detected in pediatric patients with respiratory tract infec-
tions, as well as in those with gastrointestinal symptoms.
In contrast, the other three genotypes (HBoV2-4) have been
isolated from fecal specimens (11, 12). Human bocavirus is
difficult to culture in vitro, and animal models for HBoV
infection have not been developed (13). In addition, HBoV
infection frequently coexists with other viral or bacterial
infections. Thus, sequence information from the HBoV
genome may be useful for designing efficient diagnostic
markers for HBoV infection.

Human bocavirus are known to be distributed globally,
with reports from Africa (14), America (15), Australia (10),
Asia (16-20), and Europe (9, 17). In Korea, approximately 8%
of acute lower respiratory tract infections are associated
with HBoV1 (21), while HBoV2 has been reported to be de-
tected in approximately 4% of gastroenteritis patients (21,
22). However, HBoV studies in Korea were limited to partial
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ORF sequences, except for one study (21-24).

2. Objectives

The aim of this study was to characterize a new HBoV
strain isolated from a child with acute gastroenteritis us-
ing whole-genome sequencing.

3. Methods

3.1. Specimen Preparation and Viral DNA Extraction

An HBoV-positive stool specimen from a 3-year-old fe-
male with acute gastroenteritis in Gyeonggido, South Ko-
rea was collected in July 2013. The specimen was obtained
through the Waterborne Virus Bank (Seoul, Korea). The use
of this sample for the purpose of this study was reviewed
and approved by the Songeui Campus Institutional Review
Board of the Catholic University of Korea, Catholic Medi-
cal Center. The stool specimen was stored at -20°C until
analysis. Viral genomic DNA was extracted from 140 µL of
10% fecal suspension using the QIAamp DNA Mini kit (Qi-
agen, Hilden, Germany) according to the manufacturer’s
instructions.

3.2. Amplification of HBoV Genomic DNA

To analyze the complete HBoV genome, PCR was per-
formed with 2 × Emerald Amp PCR Master Mix (TaKaRa,
Shiga, Japan). Nine primer sets were newly designed for the
amplification of HBoV (Table 1). Among these, four were for
the amplification of ORF1, one for ORF2, and four for ORF3.
Thermal cycles were as follows: denaturation at 94°C for 5
minutes; amplification for 25 cycles at 94°C for 30 seconds,
54 - 60°C for 30 seconds, and 72°C for 1 minute; and exten-
sion at 72°C for 7 minutes.

3.3. Analysis of the 5’ and 3’-ends of the HBoV Genome

The 5’ and 3’ terminal sequences were determined by
rapid amplification of complementary DNA ends (RACE)
using the RACE version 2.0 kit (Invitrogen, Carlsbad, CA,
USA). Three gene-specific primers (GSP1, GSP2, and nested
GSP) for 5’ RACE PCR amplification were designed based on
ORF1 (Table 1). The 3’ end of HBoV genomic DNA was deter-
mined with 3’ RACE, with a reverse transcription reaction
performed using the 3’-oligo (dT)-anchor-R primer. The sec-
ond PCR amplification was performed with the VP1/VP2-F
and 3’-anchor-R primers.

3.4. Cloning and Sequencing of the Complete Genome

The PCR products were subjected to 1.5% agarose gel
electrophoresis and visualized by ethidium bromide stain-
ing. The amplified fragments were purified with the
HiYield Gel/PCR DNA Fragments Extraction kit (RBC, Taipei,
Taiwan) and cloned into the pGEM-T Easy Vectors (Promega,
Madison, WI, USA) according to the manufacturer’s in-
structions. Transformants were selected on Luria-Bertani
agar plates (Duchefa, Haarlem, Netherlands) containing
40 ng/mL X-gal, 0.1 mM isopropyl-β-D-thiogalactoside, and
50 mg/mL ampicillin. Selected clones were incubated
overnight at 37°C in a shaking incubator. Plasmid DNA was
purified using the HiYield Plasmid Mini Kit (RBC, Taipei, Tai-
wan) and sequenced by Macrogen (Seoul, Korea).

3.5. Phylogenetic Analysis

The composite sequences of the nine fragments
were aligned with DNAStar software (Madison, WI, USA).
The complete genome was composed of three ORFs of
1,917 bp (ORF1), 648 bp (ORF2), and 2,004 bp (ORF3).
The complete genomic sequences of 20 HBoV refer-
ence strains were obtained from the GenBank database
(http://www.ncbi.nih.gov) (Table 2). Multiple sequence
alignment was performed with the Muscle algorithm
using molecular evolutionary genetics analysis (MEGA)
version 7.0 (25). Dendrograms were plotted with the
neighbor-joining method using MEGA version 7.0 (25).
The isolated HBoV variant was designated as CUK18. Nu-
cleotide sequence data have been deposited into GenBank
(accession number: MG195156).

4. Results

4.1. Phylogenetic and Similarity Analysis

The full-length genome of CUK18 was 5,107 bp long.
Phylogenetic analysis was performed to evaluate the ge-
netic relationships between the HBoV CUK18 strain and 20
reference strains. Following the analysis of the full-length
sequences, CUK18 was found to cluster with three HBoV2A
strains: Nsc10-N386, UK-648, and W153 (Figure 1). CUK18 ex-
hibited the highest similarity to the HBoV2A strain Nsc10-
N386 from Russia (Table 2). The nucleotide similarity be-
tween the two strains was 99.2%. The CUK18 strain was
therefore classified into the HBoV2A genotype.

The nucleotide sequences of the three large ORFs (NS1,
NP1, and VP1/VP2) of the HBoV strains were compared (Fig-
ure 2A). In the analysis of the NS1 sequence, CUK18 again
clustered with the three HBoV2A reference strains, with
similarities ranging from 98.7% to 99.0% (Table 2). In con-
trast, similarities between CUK18 and the other 17 reference
strains ranged from 74.2% to 98.1%. In the analysis of the
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Table 1. Primers Used in This Study

Primer Sequence (5’→3’) Locationa Size, bp

GSP1 GCG TTC AAC GCG TCT GAG TAG 757 - 777

GSP2 GCT CCT CCA ACA AGT ATG TGA 603 - 623

Nested GSP CTA GTG AGC ATA AAA TAT CT 444 - 464

ORF1-1F GCG TGG TGA GTG ACA CTA TGG CC 239 - 262 612

ORF1-1R CAT GAA GGT CAC CTC GCT TGT CTC 826 - 850

ORF1-2F CAT GGT CAG GGC ACA CTG GTA AC 782 - 805 797

ORF1-2R RCG AAC GCC TTG RAC TAT GG 1558 - 1578

ORF1-3F CGC CAT CTG CTG TGT ACT TAA C 1464 - 1486 830

ORF1-3R GAT TAT CCA CGT TCG ATG CCT CC 2270 - 2293

ORF1/ORF2-F CAT TCA CAG GAC TAC ACG CTT C 2038 - 2060 376

ORF1/ORF2-R GGA GCT CAT CTT CGT CTC TAG G 2391 - 2413

ORF2-F CAA CCT AGA GAC GAA GAT GAG C 2389 - 2411 617

ORF2-R CTT CGT CTG TTA CCT CCT CTG 2984 - 3005

ORF3-1F CAG GAA TCA GAG GAG GTA ACA G 2978 - 3000 737

ORF3-1R AAT ATG ACC AHG GTG TGC TKA CG 3691 - 3714

ORF3-2F GAG GCA GCT AYT TYA CTG AYT C 3559 - 3581 704

ORF3-2R TGA TGC TGT GYT TCC GTG YTG TC 4239 - 4262

ORF3-3F GAY RTV ATG CCA GAA CTT CC 3948 - 3968 634

ORF3-3R TTC CTC TGT AGA GAG CTT GRT C 4559 - 4581

ORF3-4F CCA YCA YTR TCC ATG CTY AGA GAC 4539 - 4563 615

ORF3-4R CAT CGG ACT RTA GCC TCG AAC TY 5156 - 5153

3′ -Oligo(dT)-anchor-R GTT CCT CTC CAA TGG ACA AGA GGA TTT TTT TTT TTT TT 3′ -end poly(A) tail

3′ -Anchor-R GTT CCT CTC CAA TGG ACA AGA GGA

Abbreviation: GSP, gene-specific primer; ORF, open-reading frame.
aAccording to GenBank accession number GU048663.

NP1 gene, several nucleotide substitutions were found be-
tween the HBoV2A and HBoV2B strains. The NP1 nucleotide
sequences of the four HBoV2A strains and two HBoV2B
strains (CU54TH and LZFB080) were clustered together.
When comparing CUK18 with the 20 reference strains, the
nucleotide similarity of the NP1 gene ranged from 75.8%
to 99.7% (Table 2). With respect to the ORF3 sequence,
which encodes for the VP1 and VP2 genes, CUK18 and the
three HBoV2A reference strains (Nsc10-N386, UK-648, and
W153) clustered together, with similarities ranging from
99% to 99.5% (Figure 2A). In contrast, the CUK18 strain ex-
hibited low sequence similarity with the five HBoV1 strains
(CBJ030, HZ1402, KU3, Mty1117, and P214) with values rang-
ing from 78.5% to 79.0% (Table 2). The nucleotide sequence
similarities of CUK18 with the other 12 reference strains
ranged from 87.1% to 96.2% for ORF3.

The amino acid sequences of the three large ORFs
(NS1, NP1, and VP1/VP2) of the HBoV strains were compared

(Figure 2A). In the analysis of the NS1 sequence, CUK18
again clustered with the three HBoV2A reference strains,
with similarities ranging from 99.5% (Table 2). In con-
trast, similarities between CUK18 and the other 17 refer-
ence strains ranged from 74.3% to 99.2%. The NP1 amino
acid sequences of the four HBoV2A strains and two HBoV2B
strains (CU54TH and LZFB080) were clustered together.
When comparing CUK18 with the 20 reference strains, the
amino acid similarity of the NP1 gene ranged from 69.8% to
100% (Table 2). With respect to the ORF3 sequence, which
encodes for the VP1 and VP2 genes, CUK18 and the three
HBoV2A reference strains (Nsc10-N386, UK-648, and W153)
clustered together, with similarities ranging from 99.4%
to 99.9% (Figure 2A). In contrast, the CUK18 strain exhib-
ited low sequence similarity with the five HBoV1 strains
(CBJ030, HZ1402, KU3, Mty1117, and P214) with values rang-
ing from 79.7% to 80% (Table 2). The amino acid sequence
similarities of CUK18 with the other 12 reference strains
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Table 2. Nucleotide Sequence Similarities Between CUK18 and HBoV Reference Strains Using Full-Length NS1, NP1, and VP1/VP2 Sequences

Strain Accession No. Genotype Nucleotide Sequence Similarity, % Amino Acid Similarity, %

Full-Length NS1 NP1 VP1/VP2 NS1 NP1 VP1/VP2

CBJ030 KM464730 HBoV1 76.3 74.2 76.4 79.0 77.6 69.8 79.9

HZ1402 KP710212 HBoV1 76.3 74.3 76.2 78.9 77.6 69.8 80.0

KU3 JQ411251 HBoV1 76.3 74.4 76.4 78.7 77.6 69.8 79.7

Mty1117 KX373885 HBoV1 76.3 74.4 76.4 78.8 77.6 69.8 79.7

P214 KX373884 HBoV1 76.2 74.4 76.4 78.5 77.6 69.8 79.9

Nsc10-N386 JQ964116 HBoV2A 99.2 99.0 99.4 99.5 99.5 100 99.9

UK-648 FJ170280 HBoV2A 98.9 98.7 99.4 99.0 99.5 100 99.4

W153 EU082213 HBoV2A 98.9 98.8 99.4 99.0 99.5 100 99.6

CU54TH GU048663 HBoV2B 97.5 98.1 99.7 96.2 99.2 100 97.5

LZFB080 KM624025 HBoV2B 97.0 97.5 99.5 95.6 99.1 100 97.2

NI-327 FJ973559 HBoV2B 96.0 97.6 96.6 94.2 99.2 99.1 96.4

NI-213 FJ973560 HBoV2B 95.8 97.4 96.8 94.2 99.2 99.1 96.3

SH3 FJ375129 HBoV2B 96.6 97.2 97.5 95.6 98.9 98.6 98.8

46-BJ07 HM132056 HBoV3 79.9 74.5 75.8 87.7 74.3 70.2 90.9

CU2139UK GU048665 HBoV3 80.0 74.5 76.2 87.6 74.3 70.2 90.6

TUA21007 FJ973562 HBoV3 80.0 74.5 76.1 87.7 74.3 69.8 90.9

W471 NC012564 HBoV3 80.0 74.5 76.2 87.7 74.3 70.2 90.7

W855 FJ948861 HBoV3 80.0 74.6 76.1 87.6 74.3 69.8 90.7

CMHS01111 KC461233 HBoV4 89.4 91.4 92.0 87.1 93.0 89.8 90.4

HBoV4-NI-385 FJ973561 HBoV4 88.6 90.4 87.8 87.6 90.6 83.3 90.3

Abbreviation: HBoV, Human bocavirus; NS, non-structural; VP, viralcapsid proteins.

ranged from 90.3% to 98.8% for ORF3. Among the HBoV2A
strains, there was a 100% similarity in NP1 and NS1 genes,
but there was a difference in similarity in VP1/VP2 genes.

4.2. Open Reading Frame Analysis

The deduced protein sequences of the three ORFs were
compared for the HBoV strains (Figure 2B). In the analysis
of the NS1 protein sequence, HBoV2A strains clustered to-
gether and some minor amino acid sequence differences
were revealed. Two amino acid substitutions were found
in CUK18 at amino acid positions 378 and 612 of NS1, result-
ing in changes from asparagine (N) to aspartate (D) and
glycine (G) to arginine (R), respectively. Analysis of the NP1
peptide sequence showed that the four HBoV2A strains and
two HBoV2B strains (CU54TH and LZFB080) clustered to-
gether and exhibited identical amino acid sequences.

A comparison of the amino acid sequences of ORF3,
encoding VP1 and VP2, revealed that CUK18 had the high-
est sequence similarity to the HBoV2A reference strain,
Nsc10-N386, with 99.9% deduced protein sequence similar-
ity for VP1. Comparing the CUK18 and Nsc10-N386 strains, a

leucine (L) was changed to an arginine (R) at amino acid
position 243 of VP1, which corresponded to amino acid po-
sition 111 of VP2. Among the four HBoV2A strains, three ad-
ditional substitutions were identified at amino acid posi-
tions 29, 68, and 489 of VP1, reflecting substitutions from
lysine (K) to glutamate (E), from aspartate (D) to asparagine
(N), and from glutamate (E) to alanine (A), respectively.

Of the three ORFs, ORF3 showed the highest amino acid
variation among the HBoV2A strains. Thus, the amino acid
sequences of ORF3 were compared among HBoV1, HBoV2A,
HBoV2B, HBoV3, and HBoV4 genotypes (Figure 3), with two
representative strains selected for each genotype. When
the amino acid sequences were aligned, a total of five
hyper-variable regions were observed at amino acid posi-
tions 143 - 151, 206 - 213, 407 - 421, 444 - 471, and 631 - 643.
Three of the five hyper-variable regions overlapped with
the variable regions (VR) known to be the binding sites
of HBoV antibody (26). In particular, the amino acid se-
quences from 444 to 471, corresponding to the VR-5 re-
gion, showed genotype-specific substitutions that can dis-
tinguish the five HBoV genotypes.

4 Jundishapur J Microbiol. 2019; 12(4):e79145.

http://jjmicrobiol.com


Paik B et al.

Figure 1. Phylogenetic analysis of the complete genome sequences of HBoV CUK18 and reference strains. Representative strains are referred to by “genotype strain country
(detection year)”. The closed circle indicates the novel HBoV CUK18 strain analyzed in this study.

5. Discussion

Gastroenteritis in infants and children can be caused
by various bacteria and viruses, such as Salmonella, Shigella,
rotavirus, norovirus, and astrovirus (13, 21, 22, 27-29). Hu-
man bocavirus gastrointestinal infections account for ap-
proximately 6% of gastroenteritis cases (13). Human bo-
cavirus frequently exist in co-infection with other microor-
ganisms. The average co-infection rate is 46% in patients
with gastrointestinal infections (13). Complicating the
study of HBoV, there are no in vitro cell culture systems
or in vivo animal models for HBoV (13). In addition, new
variants and uncommon HBoV types have the potential to
become dominant. Thus, a molecular diagnostic method
is needed for the detection of HBoV infection. Although
HBoV is not a dominant cause of gastroenteritis in Korea
(21, 22), the accurate diagnosis for HBoV infection is impor-
tant for reducing the burden of HBoV-related disease and
corresponding hospital costs.

New HBoV strains are emerging rapidly due to a high
mutation rate (19). Single-stranded DNA viruses like par-
voviruses have mutation rates approaching those of RNA
viruses (30). Human bocavirus 1 was initially isolated from
respiratory specimens in 2005 (2). Human bocavirus 2,
HBoV3, and HBoV4 were subsequently detected in stool
specimens (2, 8-10, 13). In addition, recombination is fre-

quently observed between HBoV strains. Previous studies
have reported that recombination break points are located
at the beginning of ORF1, encoding NP1, and ORF3, encod-
ing VP1 and VP2 (10, 17). In this study, analysis of the full-
length sequence of an HBoV isolate led to the identifica-
tion of a new HBoV2A strain (CUK18). The ORF1 and ORF3 nu-
cleotide sequences of CUK18 exhibited the highest similar-
ities with those of strain Nsc10-N386, but the nucleotide se-
quences of ORF2, encoding NP1, exhibited the highest simi-
larity with those of both HBoV2A and HBoV2B strains. Previ-
ous studies on the molecular epidemiology of HBoVs have
used partial ORF sequences from one of the three ORFs (21-
23). Our results indicated that at least two ORFs should
be used to discriminate among HBoV strains. Full-length
sequences are thus helpful for defining newly emerging
HBoV strains.

Alignment analysis of VP1 showed frequent amino acid
substitutions among HBoV genotypes (Figure 3). Of the
five hyper-variable regions identified, three regions over-
lapped with known HBoV antibody binding sites (26). In
particular, the VR-5 region, which corresponds to a three-
fold-symmetry-related monomer, exhibited considerable
amino acid differences among HBoV strains. Thus, the
VR-5 regions should be further analyzed for evaluating
genotype-specific pathogenesis and antigenicity.
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Figure 2. Phylogenetic analysis of the nucleotide (A) and amino acid (B) sequences of NS1, NP1, and VP1 of HBoV CUK18 and reference strains. Representative strains are referred
to by “genotype strain”. Closed circles indicate the novel HBoV CUK18 strain analyzed in this study.

To our knowledge, this is the second report of the full-
length sequence of an HBoV2A variant isolated from a stool
specimen in South Korea. CUK18 is very similar to the Ko-
rean HBoV isolate CUK-BC20 (MF680549) in reported re-
cently. However, there is a relatively low similarity com-
pared to Russian HBoV isolate Rus-Nsc10-N386, which were

isolated in 2010 - 2011. Analysis of the NP1 amino acid se-
quence showed a high similarity (100%) with the Rus-Nsc10-
N386 strain, while relatively low similarity with CUK-BC20
strain (99.5%). Similarly, more amino acid substitutions
were seen when compared to CUK-BC20 strain than when
compared to Rus-Nsc10-N386 strain. The result may have
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Figure 3. Comparison amino acid substitutions in ORF3 among HBoV genotypes. Two representative strains were selected for each HBoV genotype. Red vertical arrows indicate
sites of amino acid substitutions. Amino acid sequences that differ among viral strains are highlighted.
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had a time impact rather than a regional one. However,
this study was not able to be used for analysis due to the
lack of full-length sequenced Korean strains.

We suggest that the full-length sequence of the CUK18
strain can be used as a standard for comparison with other
HBoV strains. The complete genome sequence determined
in this study provides valuable information for improving
the diagnosis of HBoVs, which can cause gastroenteritis
in infants and children. In addition, it may be helpful for
predicting the emergence of HBoV variants in neighboring
countries and developing an effective HBoV vaccine.

5.1. Conclusions

The full-length sequence of an HBoV variant isolated
from a clinical sample in South Korea was determined. Phy-
logenetic analysis suggested that the newly isolated HBoV
belonged to the HBoV2A genotype. Five hyper-variable re-
gions distinguishing this HBoV genotype were found in the
viral capsid protein.
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