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Abstract

In December 2019, the new virus, COVID-19, emerged and led to a pandemic respiratory acute disease. Almost all countries have
experienced different rates of morbidity and mortality. These differences can be attributed to factors such as a diagnostic test capac-
ity for COVID-19 and the health system efficiency. Besides the differences between countries related to the COVID-19 management,
different patients represent a diverse range of clinical symptoms, from outpatient to patients admitted to the intensive care unit
(ICU) due to the severity of symptoms. To gain deeper insights into such disparities in the severity of COVID-19 clinical presenta-
tions, epidemiological studies have reported risk factors such as old age, male sex, underlying chronic diseases such as diabetes,
inflammatory and cardiovascular diseases, which have a bearing on susceptibility to COVID-19. In addition to these risk factors, the
molecular mechanism involved in the virus entry process has been under investigation. Apart from a well-known protein called
ACE2 (angiotensin-converting enzyme 2), which plays the receptor role for COVID-19, another essential protein in this pathway is
TMPRSS2 (transmembrane protease, serine 2). This protease has a crucial role in effective membrane integration between the virus
and the target cell. This process can affect the severity of the infection and the mortality rate of the disease. Thus, it seems that un-
derstanding the role of TMPRSS2 in COVID-19 infection can help better management by designing TMPRSS2 inhibitors drugs. Given
the variants of the TMPRSS2 gene, which are associated with the severity of symptoms, people exposed to severe forms of this disease
can be identified before the deterioration of the disease to adopt appropriate therapeutic approaches. Therefore, this study focused
on the different levels of the TMPRSS2 interactions with COVID-19 virus and disease severity.

Keywords: SARS-CoV-2, COVID-19, TMPRSS2

1. Context

In December 2019, China and a few months later, 184
other countries faced a global pandemic caused by SARS-
CoV-2 (severe acute respiratory syndrome Coronavirus 2)
or COVID-19, which is the main agent repressible for the
spread of recent pneumonia (1, 2). COVID-19 is the seventh
strain of the coronavirus and the fourth member of the
betacoronaviridae family (3). Among coronavirus strains,
229E, HKU1, OC43 and NL63 have slight pathogenicity, while
the SARS (severe acute respiratory syndrome) and MERS
(Middle East respiratory syndrome) can lead to fatal pneu-
monia (4). The new strain of coronavirus, COVID-19, has a
significantly higher transmission rate compared to other
strains of this family (5). This substantial transmission rate
has enabled the virus to spread to more than 184 countries
and transforms into a pandemic as opposed to SARS and
MERS, which only infected 29 and 27 countries, respectively
(6, 7). According to the WHO (World Health Organization)
as of 3 September 2021, there are 218,946,836 confirmed
cases of COVID-19 disease and 4,539,723 deaths worldwide

(8).

COVID-19 can be transmitted by mucus droplets of
cough, sneeze, exhalation or physical contact from one
person to another (9, 10). The common clinical symp-
toms of COVID-19 include shortness of breath or difficulty
breathing, fever and chills, diarrhea or vomiting, body or
muscle pain, sudden loss of taste and smell and unprece-
dented dizziness (11, 12).

The notable point about the clinical symptoms is that
the severity and range of clinical symptoms vary from per-
son to person. This difference can be attributed to risk fac-
tors such as old age, heart disease, diabetes, respiratory dis-
eases, liver or kidney disease, obesity, smoking, pregnancy,
use of immunosuppressive drugs, inflammatory chronic
disorder, autoimmune diseases and male gender (13-17).
However, the diversity of clinical symptoms in COVID-19, as
in many other multifactorial diseases, can be influenced
by the genetic background of individuals. Therefore, one
of the interesting topics about COVID-19 is its genetic sus-
ceptibility. One approach to track the genes and variants
that affect the disease severity is to study the molecular
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pathway of the COVID-19 virus entering cells, its replica-
tion and protein-encoding genes involved in this pathway
(18-21). The first step to diagnose the entry of the COVID-19
virus into the cell is to identify cell surface receptor (ACE2)
and membrane integration using the viral glycoprotein S
(spike). As soon as the virus enters the host body, the S1 sub-
unit of the S protein binds to the RBD (receptor-binding
domain) and leads to the detection of the receptor, ACE2.
On the other hand, the S2 subunit of S protein is involved
in membrane integration, allowing the virus to enter the
target cell (22, 23). It should be noted that apart from
ACE2, another key component use by the virus for effective
membrane integration is proteases on the cell surface such
as TMPRSS2 (type 2 transmembrane serine proteases) (24).
Furthermore, the virus uses the TMPRSS2 for the priming
of its S proteins. This process of preparation and active en-
try is crucial for the success of the virus in inducing clinical
symptoms and death (25). Thus, it is important to investi-
gate the role of TMPRSS2 as a protein in the molecular pro-
cess of COVID-19. In this way, the molecular mechanisms
involved in the pathogenesis of COVID-19 and possible ther-
apeutic targets can be clarified. All of these points can con-
tribute to the management of this pandemic disease.

2. Results

2.1. TMPRSS2: From Gene to Protein and Its Function

TMPRSS2 or serine 2 translucent protease, is an enzyme
encoded by the TMPRSS2 gene in humans. Located on chro-
mosome 21q22.3, this gene contains 15 exons. It is expressed
in various body tissues, including lungs, intestines, kid-
neys, pancreas and prostate. Also, the protein encoded by
this gene has serine protease property (26, 27). The pro-
tease activity of this protein is attributable to active sites
called H296, D345 and S441 in the S1 peptidase domain of
the extracellular region. The extracellular region of this
protein also contains SRCR-2 (scavenger receptor cysteine-
rich domain 2) and LDLRA (LDL-receptor class A) domains
in addition to the S1 peptidase domain (28, 29). (Figure
1). Regarding the function of TMPRSS2, it is worth not-
ing that this protease, located on the surface of the host
cell, has a pivotal role in the glycoprotein process of the
virus (30). Moreover, the glycoprotein process is essen-
tial for the entry of the virus into the host cell (31). Thus,
TMPRSS2 can influence the penetration of the virus into
cells through the glycoprotein process. For instance, it has
been reported that the cells of the host’s respiratory sys-
tem are involved in the degradation of the influenza virus
(hemagglutinin virus) by affecting the protease activity of
TMPRSS2. Hemagglutinin degradation of this virus also is
associated with the rate of infection caused by this virus
and its tissue tropism (32, 33).

2.2. TMPRSS2: Molecular Mechanism Involved in the Entry of
COVID-19 Into the Cells

COVID-19 penetrates cells through viral spike proteins
(S proteins) by binding to its ACE2 receptors in target cells.
Then S proteins are activated during the proteolytic pro-
cess. The S proteins can be activated either through cathep-
sins, which leads to the virus entry in the cell through the
endosomal pathway, or the protease property of TMPRSS2
protein on the surface of target cells, which leads to the
entry of COVID-19 into the cell (34-36). According to a pre-
vious study, in human respiratory epithelial cells, circu-
lating coronaviruses generally tend to enter cells via TM-
PRSS2 over the endosomal pathway (37). Also, TMPRSS2 has
been involved in the proteolytic activity and activation of
hemagglutinin influenza A virus (32), and it contributes to
the spread of MERS-CoV infection by facilitating virus-cell
attachment (38). Likewise, it is essential for the contrac-
tion of COVID-19 disease through the entry and membrane
fusion of the COVID-19 virus by priming and activating S
proteins (39). Another major point concerning TMPRSS2 is
the SRCR domain, which contains a protected amino acid
called valine 160. Previous studies have demonstrated the
potential role of this amino acid in the binding of proteins,
particularly proteins involved in the host’s defense system
(28, 40, 41). These points exhibit that the role of TMPRSS2
is not limited to protease activity and it may be involved in
the pathogenesis of COVID-19 virus by other mechanisms.

2.3. TMPRSS2: Gene Polymorphisms and Their Association to
COVID-19

European populations have a higher rate of COVID-19
morbidity and mortality compared with East Asia popula-
tions. Comparison between these two populations regard-
ing the variants and polymorphisms frequency of TMPRSS2
was carried out. The results showed the particular genet-
ics variants of TMPRSS2 (rs463727, rs34624090, rs55964536,
rs734056 rs4290734, rs34783969, rs11702475, rs35899679,
rs35041537, rs2070788, rs9974589 and rs7364083), which
can induce the higher expression of TMPRSS2 and are more
frequent in European populations compared with East
Asia (42). Moreover, another study has been reported SNPs,
which can predict the expression of TMPRSS2 (43). Inter-
estingly, the rs2070788 GG or rs383510 TT variant, which
can lead to the overexpression of the TMPRSS2 in lung tis-
sue, has been associated with increased susceptibility to
influenza A (44). Maybe this association is related to the
higher susceptibility of an individual to COVID-19 disease.
However, the genetic variant of TMPRSS2, namely, p.V197M
(p.Val197Met) (rs12329760), has a protective role in individ-
uals against COVID-19 infection through its destructive ef-
fect on TMPRSS2 protease activity. This genetic variant is
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Figure 1. TMPRSS2 protein domains (TM, transmembrane domain; LDLRA, LDL-receptor class A, scavenger receptor cysteine-rich domain 2).

higher in individuals who have experienced milder clini-
cal symptoms of COVID-19 (45). Therefore, it seems that by
determining the polymorphisms in the TMPRSS2 gene, it
is possible to identify the individual risk of infection and
susceptibility to COVID-19. In this way, we can predict the
disease process at early stages to make appropriate inter-
ventions.

2.4. TMPRSS2: Role in Gender Differences in COVID-19

According to the available evidence, the severity of the
COVID-19 disease and its mortality rate is higher in men
than in women (46-49). This gender difference in the sever-
ity of COVID-19 disease may be due to various behavioral
habits and the degree of social exposure leading to virus
transmission differences in males and females (50). Also,
this difference could be induced by the effects of sex hor-
mones, estrogen and androgens. Molecular studies on can-
cer have shown that testosterone, as a major androgen, af-
fects the production of TMPRSS2 protein in the prostate
glands of men which suffer from prostate cancer. Thus,
TMPRSS2 gene appears to be an androgen-responsive gene
(51, 52). It has been suggested that a similar mechanism
may occur in the lung cells of men with COVID-19. In other
words, TMPRSS2 is overexpressed under the influence of
testosterone in men, which facilitates the entry of COVID-
19 into the cell through its effect on viral S proteins. In this
way, it produces various severities of the disease in men
and women (53). On the other hand, in light of the im-
portance of androgen-dependent TMPRSS2 in the entry of
COVID-19 into the cell (54), studies have explored the use of

TMPRSS2 inhibitors in preventing the virus from entering
the cell by inhibiting the protease activity of TMPRSS2 (39,
55). Informed by these important points, extensive clini-
cal studies have been conducted to investigate the effect
of using TMPRSS2 inhibitors such as camostat, nafamostat
and bromhexine on the controlling of severity of COVID-19
symptoms in patients (27, 54, 56). (Figure 2).

2.5. TMPRSS2: Role in Age Differences in COVID-19

Evidence suggests that children and adults exhibit var-
ious degrees of clinical symptoms of COVID-19 disease (57).
According to a study in China, 90% of children are either
asymptomatic or experience a mild course of disease, but
elderly patients are more likely to experience severe types
of the disease and be hospitalized (58). Given the impor-
tance of TMPRSS2 in the infection rate of COVID-19, many
studies have looked at the association between the expres-
sion of this gene and age in the respiratory epithelial cells.
The investigations have revealed a positive correlation be-
tween the expression of the TMPRSS2 gene and age. Accord-
ing to the results, the expression of TMPRSS2 in nasal and
bronchial tissue of children is significantly lower than that
of adults. (59, 60). Considering that the entrance of COVID-
19 into the cell depends on the expression of TMPRSS2 (39),
it can be speculated that the mild clinical symptoms of
COVID-19 in children could be affected by the lower levels
of TMPRSS2 expression on the cell surface.
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Figure 2. TMPRSS2 role in the process of COVID-19 entry to the target cell and contribution the androgens. Testosterone increases androgen receptor activity. Increased
androgen receptor activity also increases transcription of the TMPRSS2 gene. COVID-19 uses ACE2 as a receptor to enter the cell and TMPRSS2 to prepare and activate its S
proteins. Serine protease inhibitors such as camostat can partially block the entry of COVID-19 into cells by inhibiting TMPRSS2. (S1,2: spike glycoproteins).

3. Conclusions

Today, the global pandemic of COVID-19 is affecting a
large number of people in different countries across the
world. Investigations regarding the molecular processes
involved in COVID-19 entry into the cell and proliferation
of the virus are crucial for better management of the dis-
ease. In this context, the critical interaction of TMPRSS2
with ACE2 as COVID-19 receptor has been highlighted, as
it can determine the severity of consequences caused by
COVID-19. Therefore, further studies on different and new
aspects of the TMPRSS2 gene function and its association
with the severity of COVID-19 disease can lead to the devel-
opment of new drug targets for better management of this
disease.
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