PARP Inhibitors and DNA Repair: A Novel Beneficial Approach for Targeting Synthetic Lethal Tumor Cells

authors:

avatar Ramin Saravani ORCID 1 , * , avatar Saman Sargazi 2 , avatar Hamid-Reza Galavi 1 , avatar Sadegh Zarei 2

Cellular and Molecular Research Center and Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
Department of Clinical Biochemistry, School of Medicine, Yazd University of Medical Sciences, Yazd, Iran

how to cite: Saravani R, Sargazi S, Galavi H, Zarei S. PARP Inhibitors and DNA Repair: A Novel Beneficial Approach for Targeting Synthetic Lethal Tumor Cells. Gene Cell Tissue. 2017;4(3):e62160. https://doi.org/10.5812/gct.62160.

References

  • 1.

    Oconnor MJ, Martin NM, Smith GC. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene. 2007;26(56):7816-24. [PubMed ID: 18066095]. https://doi.org/10.1038/sj.onc.1210879.

  • 2.

    Kaelin WJ. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5(9):689-98. [PubMed ID: 16110319]. https://doi.org/10.1038/nrc1691.

  • 3.

    Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913-7. [PubMed ID: 15829966]. https://doi.org/10.1038/nature03443.

  • 4.

    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917-21. [PubMed ID: 15829967]. https://doi.org/10.1038/nature03445.

  • 5.

    Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287-94. [PubMed ID: 22258607]. https://doi.org/10.1038/nature10760.

  • 6.

    Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH. Integrating genetic approaches into the discovery of anticancer drugs. Science. 1997;278(5340):1064-8. [PubMed ID: 9353181].

  • 7.

    Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta A, Valenzuela MT, Matinez-Romero R, et al. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol Biol. 2007;8:29. [PubMed ID: 17459151]. https://doi.org/10.1186/1471-2199-8-29.

  • 8.

    Nagaraju G, Scully R. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair (Amst). 2007;6(7):1018-31. [PubMed ID: 17379580]. https://doi.org/10.1016/j.dnarep.2007.02.020.

  • 9.

    Ming M, He YY. PTEN in DNA damage repair. Cancer Lett. 2012;319(2):125-9. [PubMed ID: 22266095]. https://doi.org/10.1016/j.canlet.2012.01.003.

  • 10.

    Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med. 2009;1(6-7):315-22. [PubMed ID: 20049735]. https://doi.org/10.1002/emmm.200900041.

  • 11.

    Williamson CT, Muzik H, Turhan AG, Zamo A, O'Connor MJ, Bebb DG, et al. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther. 2010;9(2):347-57. [PubMed ID: 20124459]. https://doi.org/10.1158/1535-7163.MCT-09-0872.

  • 12.

    Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ, et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood. 2010;116(22):4578-87. [PubMed ID: 20739657]. https://doi.org/10.1182/blood-2010-01-265769.

  • 13.

    Sourisseau T, Maniotis D, McCarthy A, Tang C, Lord CJ, Ashworth A, et al. Aurora-A expressing tumour cells are deficient for homology-directed DNA double strand-break repair and sensitive to PARP inhibition. EMBO Mol Med. 2010;2(4):130-42. [PubMed ID: 20373286]. https://doi.org/10.1002/emmm.201000068.

  • 14.

    Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785-90. [PubMed ID: 18591545]. https://doi.org/10.1200/JCO.2008.16.0812.

  • 15.

    Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 2010;10(4):293-301. [PubMed ID: 20200537]. https://doi.org/10.1038/nrc2812.

  • 16.

    Ferraris DV. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem. 2010;53(12):4561-84. [PubMed ID: 20364863]. https://doi.org/10.1021/jm100012m.

  • 17.

    Damours D, Desnoyers S, Dsilva I, Poirier GG. Poly, (ADP-ribosyl) ation reactions in the regulation of nuclear functions. Biochem J. 1999;342 ( Pt 2):249-68. [PubMed ID: 10455009].

  • 18.

    Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, et al. Homologous recombination-deficient tumors are hyper-dependent on POLQ-mediated repair. Nature. 2015;518(7538):258-62. [PubMed ID: 25642963]. https://doi.org/10.1038/nature14184.

  • 19.

    Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature. 2015;518(7538):254-7. [PubMed ID: 25642960]. https://doi.org/10.1038/nature14157.

  • 20.

    Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11(3):196-207. [PubMed ID: 20177395]. https://doi.org/10.1038/nrm2851.

  • 21.

    Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science. 2014;343(6178):1470-5. [PubMed ID: 24675954]. https://doi.org/10.1126/science.1252230.

  • 22.

    Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A. 2011;108(8):3406-11. [PubMed ID: 21300883]. https://doi.org/10.1073/pnas.1013715108.

  • 23.

    Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006;34(21):6170-82. [PubMed ID: 17088286]. https://doi.org/10.1093/nar/gkl840.

  • 24.

    De Bono JS, Mina LA, Gonzalez M, Curtin NJ, Wang E, Henshaw JW, et al. First in human trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. J Clin Oncol, (American Society of Clinical Oncology). 2013.

  • 25.

    Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14(9):882-92. [PubMed ID: 23810788]. https://doi.org/10.1016/S1470-2045(13)70240-7.

  • 26.

    Drew Y, Ledermann JA, Jones A, Hall G, Jayson GC, Highley M, et al. Phase II trial of the poly(ADP-ribose) polymerase (PARP) inhibitor AG-014699 in BRCA 1 and 2–mutated, advanced ovarian and/or locally advanced or metastatic breast cancer. J Clin Oncol. 2011;29(15_suppl):3104. https://doi.org/10.1200/jco.2011.29.15_suppl.3104.

  • 27.

    Huggins Puhalla SL, Beumer JH, Appleman LJ, Tawbi HH, Stoller RG, Lin Y, et al. A phase I study of chronically dosed, single-agent veliparib (ABT-888) in patients (pts) with either BRCA 1/2-mutated cancer (BRCA+), platinum-refractory ovarian cancer, or basal-like breast cancer (BRCA-wt). J Clin Oncol, (American Society of Clinical Oncology). 2012.

  • 28.

    Oplustil O'Connor L, Rulten SL, Cranston AN, Odedra R, Brown H, Jaspers JE, et al. The PARP Inhibitor AZD2461 Provides Insights into the Role of PARP3 Inhibition for Both Synthetic Lethality and Tolerability with Chemotherapy in Preclinical Models. Cancer Res. 2016;76(20):6084-94. [PubMed ID: 27550455]. https://doi.org/10.1158/0008-5472.CAN-15-3240.