
Uncorrected Proof

Arch Neurosci. 2021 October; 8(4):e119948.

Published online 2021 November 6.

doi: 10.5812/ans.119948.

Letter

Regulation of Intestinal Microbiota as a Therapeutic Target for

Neuroinflammatory Diseases in Persistent COVID

Diana Matias-Perez 1, 2 and Ivan Antonio Garcia-Montalvo 1, 2, *

1Division of Graduate Studies and Research, National Technological Institute of Mexico, Mexico City, Mexico
2Division of Graduate Studies and Research, Technologic Institute of Oaxaca, Oaxaca, Mexico

*Corresponding author: Division of Graduate Studies and Research, National Technological Institute of Mexico, Mexico City, Mexico. Email: ivan.garcia@itoaxaca.edu.mx

Received 2021 October 01; Revised 2021 October 17; Accepted 2021 October 23.

Keywords: COVID-19, Intestinal Microbiota, Neuroinflammatory Diseases

Dear Editor,
At the beginning of 2020, first COVID-19 cases were re-

ported outside China. SARS-CoV-2 presents a marked in-
flammatory response, which causes the cytokine storm,
a state of self-sustained hyperinflammation that occurs
together with a poor immune system (1, 2). At the
brain level, neural and immune cells serve as reser-
voirs for the virus, thereby allowing neurodegenerative
development (3, 4). Dysregulated immune responses
after infections can persist in what has been called
inflammation-immunosuppression syndrome and persis-
tent catabolism. A cytokine storm has been proposed to
initiate this specific immunological situation during the
acute phases of infectious pictures, similar to what oc-
curs in COVID-19. It results from the continuous release of
molecules called molecular patterns, which endanger the
damaged organs, causing chronic systemic inflammation
and a change in the production of stem cells from the bone
marrow toward the myeloid cells. This contributes to the
appearance of chronic anemia and lymphopenia. In addi-
tion to respiratory distress, subjects suffering from COVID-
19 may manifest other symptoms characteristic of infec-
tion to the nervous system (vomiting, dizziness, nausea,
and frequent headaches) (5-7). The mechanism of entry
of the SARS-CoV-2 virus into the nervous system occurs via
the peripheral nerves (retrograde axonal transport from
the peripheral nerves; hematogenous route and via the ol-
factory nerve) and by the hematological route (leukocytes-
bloodstream or bloodstream-mucosa). The relationship
between persistent COVID-19 and neurodegeneration is
still unknown. However, the model presented by its prede-
cessor SARS-CoV can be taken as a model, which affects host
proteases (endosomal cathepsins, cell surface transmem-
brane proteases, and furin). These proteases are involved

in the pathogenesis of neurodegenerative diseases. In the
case of cathepsins, they participate in the degradation of
neuronal proteins such as huntingtin and alpha-synuclein.
The abnormal degradation of these proteases leads to an el-
evation and accumulation of them, causing alterations in
mitochondrial function, failure in response to the stress of
the endoplasmic reticulum and other proteases, and lead-
ing to the appearance of neurodegenerative diseases (8-
13). The microbiota performs health and disease regula-
tory functions. The intestinal microbiota presents an enor-
mous diversity, with microorganisms associated with the
subject’s age (see Figure 1).

It is involved with specific colon activities (carbohy-
drate fermentation, vitamin synthesis, and xenobiotic
metabolism) and acts as a barrier for pathogenic bacteria
that invade the gastrointestinal tract. The microbiota al-
teration may be due to changes in dietary patterns, caus-
ing susceptibility to diseases (metabolic syndrome and
neurodegenerative disorders). It influences the synthesis
of neurotransmitters and neuromodulators, affecting the
communication between the intestine, the brain, and the
functions cerebral. Signal transduction is complex and
can include neural, endocrine, immune, and metabolic
pathways. Several studies have proposed the mechanism
of infection that SARS-CoV-2 presents through the entero-
cytes of the small intestine, the depletion of various bacte-
rial species as a consequence of COVID-19 associated with
an increase in TNF-α, CXCL10, CCL2, and IL-10, the interac-
tion of bacterial surfaces with viral proteins, and the struc-
tural components of commensal bacteria such as gram-
negative (lipopolysaccharides) and gram-positive (pepti-
doglycans) bacteria. The molecule responsible for inhibit-
ing some viral infections is surfactin, a cyclic lipopep-
tide with virucidal properties (Influenza A, Chikungunya,
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Figure 1. The representative scheme of intercommunication through the gut-brain axis

Ebola, and Zika). An example of the above is the partic-
ipation of F. prausnitzii, inducing the production of reg-
ulatory T cells of the human colon that secrete the anti-
inflammatory cytokine IL-10; the high concentration of E.
rectole in the intestine is related to the reduction of inflam-
mation in Alzheimer’s disease (14-17). Yeoh et al. (2021) con-
cluded that alterations in the gut microbiota were asso-
ciated with immune dysregulation because gut microor-
ganisms were probably involved in modulating host in-
flammatory responses in COVID-19 (18). The brain has im-
mune cells that protect against infections and injuries that
favor the neuronal plasticity process and improve brain
connectivity. However, those responsible for the neuroin-
flammation process can affect the mental state: the mi-
croglia (release of pro-inflammatory molecules and amy-
loid beta-protein) and astrocytes. The emission of the in-
testinal microbiota modulates the immune system. In
return, microbial symbionts control the maturation and
function of the immune system (19-21). By way of con-
clusions, we can say that it is essential to modulate the
composition and function of the intestinal microbiota in
subjects with persistent COVID through natural products,
such as probiotics, as a strategy to promote immune func-
tion and thus modulate inflammatory responses. In this
regard, we can mention lactic acid bacteria (Lactobacilli,
Streptococci, Pediococcus, Enterococcus, Bifidobacteria, and
Saccharomycesboulardii). Another possible strategy is the
inclusion of flavonoids in the diet since they modulate the
signaling pathway of nuclear factor-kappa β (NF-κB) and
peripheral-cerebrovascular blood flow, reducing the dam-

age and neuronal loss induced by neurotoxins and neu-
roinflammation. In addition to the above, antibiotics, such
as rifampin and minocycline, can be administered, which
have been shown to reduce the levels of beta-amyloid pro-
tein in the brain. As a result, these antibiotics reduce in-
flammation cytokines and avoid changes in the microglia,
which can delay depressive symptoms and the emergence
of persistent COVID anxiety.
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