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Abstract

Background: Epilepsy is a chronic central nervous system disorder with a high prevalence in modern society. Despite using com-
mon anticonvulsant drugs, its control is not adequately achieved. Animal models for seizures play the leading role in advancing
our understanding of the cellular mechanisms of epilepsy. The present study was an attempt to elucidate the electrophysiological
mechanism of the effect of sodium valproate on the cellular model of epilepsy. Understanding the cellular mechanisms of this drug
may help clarify the pharmacological screening of other drugs.
Methods: The intracellular recording was made from F1 cells of garden Helix aspersa in the presence of Ringer solution. Following
the extracellular application of valproate sodium at a concentration of 10 mM after and before the use of (25mM) epileptogenic agent
(pentylenetetrazol (PTZ)), we evaluated its effect on paroxysmal depolarization shift (PDS) and electrophysiological characteristics.
Results: These results showed that valproate sodium could reduce neuronal excitability. It could significantly hyperpolarize rest
action potential by decreasing the frequency of firing rate and increasing the amplitude of afterhyperpolarization (AHP) and can
prevent depolarization of rest action potential by PTZ.
Conclusions: The results suggested that valproate sodium could reduce the PTZ-induced hyperexcitation by hyperpolarization of
resting membrane potential (RMP), a reduction in AHP amplitude, and firing the frequency.
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1. Background

Epilepsy is a chronic central nervous system disorder
with a high prevalence in modern society (1). Despite the
use of common anticonvulsant drugs, its control is not ad-
equately achieved, and around 30% of patients are non-
responders to the existing therapies (2, 3). Animal mod-
els for seizures play the main role in advancing our under-
standing of the cellular mechanisms of epilepsy (4).

Studies have shown that intracellular recordings in
animal models provide an unparalleled view into the
functional role of individual neurons, intracellular ap-
proaches, action potentials, and ion channels (5-7). Val-
proate sodium has remarkable advantages among anti-
convulsant drugs and is a standard antiepileptic agent. Un-
derstanding its cellular mechanisms can be helpful in the
study of cellular records of medicinal plants with anticon-
vulsant activities. Therefore, the present study was an at-

tempt to elucidate the electrophysiological mechanism of
the effect of sodium valproate on the cellular model of
epilepsy, using the intracellular recording method. Be-
cause the effect of sodium valproate on the cellular level
has not yet been investigated, understanding the cellular
mechanisms of this drug may help elucidate the pharma-
cological screening of other drugs.

2. Methods

Intracellular recording technique under current-
clamp conditions was performed on the F1 neuron of
Helix aspersa (Persian garden snail). In this study, af-
ter acquiring permission from the ethics committee
(ZUMS.REC.1393.99), experiments were done on the F1

neuronal soma membrane of the suboesophageal ganglia
of snail Helix aspersa (Iranian garden snail). Before the
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testing, for creating the same physiologic condition for
samples and assurance of animal activity, we took them
in a water chamber, and after the removal of the oysters
(8), the test was done. Thus, the oyster was removed by a
bone breaker, and the animal was fixed to the broad by a
needle. The connective tissue surrounding neurons was
removed by delicate tissues forceps without proteolytic
enzymes, and then the ganglionic mass was dissected out
and pinned on the Sylgard 184 grounded recording cham-
ber with a normal ringer. Snail normal ringer solution
contained: 80 mM NaCl, 10 Mm, CaCl2 mM, 5 mM MgCl2, 4
mM KCl, 10 mM Glucose, 5 mM HEPES(4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid). The pH of solutions was
regulated by pHmeter and Trizma base in the range of
7.7 (9). After fixation, F1 neurons were visually identified
by location, size, color of the cell, and their position rel-
ative to other cells to detect the desired cell, and then
recording was done. Rest action potential was recorded
by microelectrodes (5). Microelectrodes were produced
of thin procilicat containing internal filaments (Clark
Electromedical Instruments, UK).

Thin tubes were pulled by Puller equipment. Then, mi-
croelectrodes were filled with 3 M chloride potassium. Sil-
ver wire with partial coverage with Ag/AgCl was put in glass
microelectrode. The resistance of microelectrode in its tip
was 3 to 5 ohm. This assembly was directly connected to
amplifier (AxoclampInc2B, USA). Agar Bridge was used as
reference electrode in all experiments, which connected
solution of record chamber to potential zero (ground). Af-
ter the entrance of the electrode into the neuron, basic
recording was performed (with recording of cell sponta-
neous activity) for 5 minutes. Recorded data were reserved
by 16-bite analogue – digital converter and digital – ana-
logue (AD Instrument, Australia) for further analysis. The
evoked and spontaneous activity of the cell was recorded
by current clamp technique (10). The electrophysiologi-
cal parameters were measured, such as resting membrane
potential (RMP), action potential amplitude, spontaneous
electrical activity frequency, and following hyperpolariza-
tion. Then, drugs were injected into the extracellular space
and evoked, and spontaneous activity was recorded.

Data were analyzed by Chart software, and the t-test
and one-way ANOVA were used to compare data. A P < 0.05
was considered statistically significant.

3. Results

The F1 neuron of Helix aspersa shows spontaneous
rhythmic activity under control conditions (Figure 1). Fol-
lowing the use of pentylenetetrazol (PTZ; 25 mm), the
characteristic of epileptiform and burst activity was estab-
lished (Figure 2). Then, to evaluate VPA’s therapeutic effect

against epileptic activity induced by PTZ, VPA (10 mM) was
added to Ringer’s solution containing PTZ. Next, changes
in action potential characteristics were examined under
different experimental conditions.

3.1. Effects of PTZ on Electrophysiology Properties of F1 Cells

Acute exposure to PTZ leads to significant depolariza-
tion of the RMP and a significant increase in firing fre-
quency. It also significantly reduced the AHP amplitude
(Table 1 and Figure 2).

3.2. Evaluation of the Therapeutic Effects of Valproate Sodium
on Electrophysiological Changes Induced by PTZ

After adding VPA at a concentration of 10 mM, the char-
acteristics of recording are presented in Figure 2 and Table
2. The reduction in AHP amplitude was significant in the
presence of either PTZ or valproate sodium. Action poten-
tial did not change remarkably. The frequency of action po-
tential reduced slightly than the control group (Table 1 and
Figure 2).

3.3. The Prophylactic Effects of the Valproate Sodium on PTZ-
Induced Changes in F1 Neurons

The preventive effect of VPA on the electrical proper-
ties of the F1 neuron was investigated. Application of VPA
alone to the bathing solution led to significant hyperpo-
larization of RMP and a reduction in AHP amplitude and
the firing frequency, but the application of PTZ following
VPA exposure led to a significant increase in the firing fre-
quency and a significant decrease in the AHP amplitude
compared to the control group (Table 2 and Figure 3).

4. Discussion

Epilepsy affects around 70 million people worldwide
and is one of the most common neurological disorders im-
pair nerve function (11, 12). Despite using common anticon-
vulsant drugs, there is no available treatment for epilepsy
(13). Understanding the cellular mechanisms of epilepsy
and standard antiepileptic agents can help discover other
medicines. Therefore, in the present study, we aimed to
investigate the cellular effects of VPA on the excitability
of neurons in an epileptic model. As a clinically helpful
antiepileptic drug, VPA has a broad spectrum of antiepilep-
tic activity (14). Despite considerable clinical and experi-
mental efforts, few studies have been conducted on its cel-
lular mechanism of action. The present study’s findings in-
dicated that the use of VPA following PTZ exposure reduced
neuronal excitability, which was associated with lower
membrane depolarization, reduced firing frequency, and
higher AHP amplitude (Table 1 and Figure 2). Redecker et
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Figure 1. Spontaneous activity of one neuron at control condition.

Figure 2. Induction of epileptic electrical activity by pentylenetetrazol (PTZ) in snail neurons and valproate effect on its inhibition.

Table 1. Effect of Valproate Sodium After the Administration of Pentylenetetrazol (PTZ) a , b

Control PTZ PTZ +Val

Resting membrane potential (mV) -41.74 ± 0.28 -36.56 ± 0.34*** -42.13 ± 0.84###

Amplitude (mV) 47.68 ± 0.70 44.06 ± 0.63 49.00 ± 1.39###

AHP amplitude (mV) -13.58 ± 0.6 -7.65 ± 0.67*** -7.70 ± 0.73

Frequency (Hz) 2.02 ± 0.06 3.01 ± 0.11** 1.52 ± 0.13###

aData present mean ± standard error of the mean.
b*Represent significantly between PTZ control (***P ≤ 0.001), (**P ≤ 0.01) represent significantly between PTZ, PTZ + Val (### P ≤ 0.001), (## P ≤ 0.01).

Table 2. The effect of valproate sodium before epileptic activity pentylenetetrazol (PTZ) a , b

Control Val PTZ

Resting membrane potential (mV) -40.54 ± 0.38 -41.36 ± 1.34*** -39.78 ± 0.64

Amplitude (mV) 44.38 ± 0.80 43.06 ± 1.23 43.17 ± 0.88

AHP amplitude (mV) -12.78 ± 0.7 -10.6 ± 0.37*** -7.78 ± 0.55###

Frequency (Hz) 2.89 ± 0.16 2.21 ± 0.10* 2.07 ± 0.05#

aData present mean ± standard error of the mean.
b*Represent significantly between Val, control (***P ≤ 0.001), (*P ≤ 0.05) represent significantly between PTZ, control (###P ≤ 0.001), (#P ≤ 0.05).

al. tested several structural analogues of VPA for the deter-
mination of the antiepileptic mechanism of valproate (15).
In addition to VPA ethyl ester, VPA mannitol esters could
suppress paroxysmal depolarization shift (PDS) in snail B3
neurons in the pentylenetetrazole-induced epilepsy model
(15). Astrup et al. and Speckmann et al. demonstrated that
the antiepileptic effect of VPA is intracellular, and these

effects of VPA were related to the activation of voltage-
dependent potassium currents (16, 17). Papp et al. re-
ported that sodium valproate reduced depolarization by
PTZ. It also increased the range of action potential after
PTZ administration (18). To investigate the possible protec-
tive effect of VPA against the induction of epileptic activ-
ity by PTZ, in this study, VPA was added into extracellular
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Figure 3. The preventive effect of valproate sodium on epileptic electrical activity.

space before adding PTZ. It was observed that VPN had no
antiepileptic action before using PTZ (Table 2 and Figure 3).
There was no study in this field.

4.1. Conclusions

Our findings showed that VPA reduced the PTZ-induced
hyperexcitation by hyperpolarizing RMP and reducing
AHP amplitude and the firing frequency.

4.2. Limitation of the Study

Intracellular recording is a demanding technique, and
only a small number of neurons can be recorded.
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