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Abstract

Background: Cerebral ischemia can cause irreversible structural and functional damages to the brain, especially to the hippocam-
pus. Preconditioning with endurance training and endogenous adenosine infusion may reduce ischemia-associated damages.
Objectives: This study aimed to evaluate the effect of preconditioning with endurance training and endogenous adenosine infusion
on cell death in the hippocampal CA1 region following ischemia/reperfusion injuries in a rat model.
Methods: Male Wistar rats were divided into five groups: (1) control (n = 8); (2) ischemia (n = 12); (3) endurance training + ischemia
(n = 12); (4) adenosine infusion + ischemia (n = 12); and (5) endurance training + adenosine infusion + ischemia (n = 12). The rats in
the training groups ran on a treadmill five days per week for eight weeks. In the adenosine infusion groups, the rats were injected
0.1 mg/mL/kg of adenosine intraperitoneally. Also, in the ischemic groups, both common carotid arteries were clamped for 45 min-
utes. Cresyl violet staining and real-time polymerase chain reaction (PCR) assay were used to evaluate cell death and cytokine gene
expression, respectively.
Results: Based on the present results, treatments, including endurance training + ischemia, adenosine infusion + ischemia, and
endurance training + adenosine infusion + ischemia reduced the level of interleukin-6 (IL-6) and glutamate gene expression, re-
spectively, compared to the group of ischemia only. In contrast, the expression of nerve growth factor (NGF) and adenosine receptor
(A2A) genes increased by seven, four, and two folds in the endurance training + ischemia, adenosine infusion + ischemia, and en-
durance training + adenosine infusion + ischemia groups, respectively, compared to the group of ischemia only.
Conclusions: Endurance training on a treadmill and exogenous adenosine infusion synergistically diminished cell death and re-
duced the expression of pro-inflammatory cytokines, while promoting the neurotrophic factor expression. When endurance train-
ing and adenosine infusion were used as stimulants before the induction of cerebral ischemia, they significantly reduced cell death.
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1. Background

Stroke is the most common cause of mortality and
permanent disability worldwide (1). Cell death and func-
tional loss after stroke have been associated with excito-
toxicity, calcium dysregulation, oxidative stress, inflam-
mation, and pre-apoptotic stimuli (2). To develop new
treatments to prevent stroke and promote recovery from
stroke, it is essential to investigate the mechanisms of pro-

inflammatory responses associated with ischemia (3). The
level of interleukin-6 (IL-6) has been shown to increase fol-
lowing ischemia and stimulate the expression of adherent
endothelial cells (4), which eventually block microvessels
and cause cell damage (5). However, study of cytokines
in the nervous system injuries is challenging due to their
complex pre- and anti-inflammatory activities through in-
terdependent pathways, such as the neurotrophic proper-
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ties of IL-6 (4-6).

The adverse effects of inflammatory mediators on cell
proliferation, migration, and survival (7) may be prevented
by neurotrophic factors, which are vital components in
neuronal survival, growth, differentiation, and plasticity
(8). Nerve growth factor (NGF), along with other trophic
factors, is widely found in the brain, including the hip-
pocampus. It positively regulates neurogenesis, synapto-
genesis, and neurovascular integrity (9). It seems that NGF
has a direct effect on releasing glutamate in the hippocam-
pus (10), which is the most abundant excitatory neuro-
transmitter in the brain, involved in neuronal survival and
cell death (11).

Moreover, glutamate plays an important role in long-
term neuronal excitability, synaptic organization, and neu-
ronal migration during neuronal development and main-
tenance (12). Nevertheless, significant amounts of gluta-
mate can have neurotoxic effects; therefore, excitotoxicity
in ischemic injuries can exacerbate cellular loss, especially
in the hippocampus (13). It has been shown that increas-
ing the level of endogenous adenosine through adenosine
A2A receptors inhibits the function of inflammatory cells
(14), decreases glutamate release (15), and increases neu-
rotrophic factors, such as NGF (16). Consequently, endoge-
nous adenosine is recognized as a potent physiological me-
diator, regulating various physiological processes through
adenosine receptors (17) that may be potential therapeutic
targets for stroke, as well. Previous studies have suggested
the positive effect of endogenous adenosine on functional
recovery after brain ischemia; however, the effect of exoge-
nous adenosine has not been investigated yet.

Additionally, the regulation of inflammatory, excito-
toxic, and trophic processes following an ischemic injury
can be influenced by physical activity. Physical exercise
shows neuroprotective activities against ischemic stroke
by reducing primary risk factors, such as hypertension,
dyslipidemia, diabetes, sedentary lifestyle, and obesity (18).
Besides, preconditioning with endurance training on a
treadmill can lead to neuroprotection and improved neu-
ronal survival in ischemia/reperfusion injuries, resulting
in reduced infarct volume and improved functional recov-
ery (18, 19).

Previous studies have demonstrated that exercise pre-
conditioning facilitates functional recovery after strokes
by decreasing inflammatory responses, such as IL-6 expres-
sion, inhibiting glutamate overactivation, and increasing
the NGF expression. Besides, modification of the molec-
ular cascade seems to be associated with reduced neu-
ronal apoptosis, restored function of the blood-brain bar-
rier (BBB), and enhanced angiogenesis (20, 21). Neverthe-
less, endurance training on a treadmill may induce physi-
ological and psychological stress (22) and increase the re-
lease of stress hormones (23), suggesting the dual role of

training in pre- and post-ischemic stroke inflammatory re-
sponses (21).

2. Objectives

Since it is essential to identify more potent treatments
for cerebral ischemia (24), the present study aimed to
evaluate the effect of endurance training and exogenous
adenosine infusion, as a preconditioning intervention, on
inflammatory, excitotoxic, and neurotrophic processes in
a rat model of stroke. By inducing an ischemia/reperfusion
injury by transient common carotid artery clamping, the
results indicated the synergistic effects of preconditioning
with physical exercise and exogenous adenosine infusion
on neuronal and functional integrity.

3. Methods

3.1. Animals

Fifty-six adult male Wistar rats (weight: 250 - 300 g)
were purchased from Pastor Institute of Iran (Tehran, Iran).
The rats were housed in standard Plexiglas cages under
controlled ambient conditions (22 - 24°C, 48 - 55% humid-
ity) in a 12: 12 h light/dark cycle with ad libitum access to
food and water. The rats were randomly divided into five
groups: control (group 1, n = 8); ischemia (group 2, n =
12); endurance training + ischemia (group 3, n = 12); adeno-
sine infusion + ischemia (group 4, n = 12); and endurance
training + adenosine infusion + ischemia (group 5, n = 12).
The animals were included to study based on weight, age,
and sex. The exclusion criteria were diseases and lack of
racial or physiological homogeneity. Also, animals were ex-
cluded if they had injuries during exercise or expired af-
ter cerebral ischemia. In the experimental groups, factors,
such as performing aerobic exercises, lack of injury dur-
ing exercise, and lack of sudden weight change, were exam-
ined; if these conditions were not met, the animals would
be eliminated from the study (Appendix).

3.2. Endurance Training and Physical Exercise Protocol

The rats in the training group were habituated to tread-
mill walking for 10 - 15 minutes at a speed of 15 m/min
at zero slope in three alternating sessions per week be-
fore the main training sessions. Next, an eight-week en-
durance training protocol was applied for training the rats
on a 10-line treadmill in five sessions per week. The train-
ing program started at 18 m/min for 20 minutes at zero
slope in the first week. The duration, intensity, and tread-
mill slope were increased gradually; in the eighth week
of training, the animals underwent a 50-minute training
at a speed of 30 m/min at a 10° slope (25). After complet-
ing the exercise protocol and 24 hours of rest, cerebral is-
chemia/reperfusion surgery was performed.
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3.3. Adenosine Treatment Protocol

In this study, 3 mg/mL of adenosine (Adenocard &
Adenoscan) was purchased from the Faculty of Phar-
macy of Tehran University of Medical Sciences, Tehran,
Iran. The adenosine-treated groups received 0.1 mg/mL/kg
of adenosine daily at the beginning of each week of
endurance training. Adenosine was infused intraperi-
toneally slowly over one minute (26) at three hours after
endurance training; the rats received eight doses of adeno-
sine in total. In the adenosine-treated groups, cerebral is-
chemia/reperfusion surgery was performed one week after
the final adenosine injection.

3.4. Cerebral Ischemia/Reperfusion Surgery

To induce transient cerebral ischemia, the rats were
anesthetized by an intraperitoneal (IP) injection of 50
mg/kg of ketamine and 5 mg/kg of xylazine (Merck, Ger-
many) (27). The vagus nerve was carefully separated from
the carotid arteries. Next, both the common carotid arter-
ies were clamped with a microsurgical clip for 45 minutes,
after which the blood flow was allowed to reperfuse the
carotid plate freely (26). Reperfusion of the carotid arteries
was confirmed by visual examination. During surgery, the
rectal temperature of the animals was maintained at 36.5
± 0.5°C, using a heating system. The animals were kept
separately for 48 hours after surgery with ad libitum access
to water and food to facilitate recovery (28).

3.5. Tissue Preparation

The rats were deeply anesthetized at 48 hours after the
induction of ischemia with a combination of 50 mg/kg of
ketamine and 5 mg/kg of xylazine (Merck, Germany) (27).
The brain tissue was immediately dissected and placed on
ice and then frozen in liquid nitrogen. Next, the brains
were embedded in paraffin blocks, and coronal sections
with a thickness of 7 µm were prepared with a microtome
for staining. The remaining tissue samples were stored at
-80°C for gene expression assays.

3.6. Cresyl Violet (Nissl) Staining

Cresyl violet (Nissl) staining was used to identify the
basic structure of healthy neurons and necrotic neurons.
For staining, slices with a thickness of 7 µm (three slices
per animal) were transferred to silane-coated slides and
stained with a 0.1% Cresyl violet acetate solution. Next,
the slides were dried and covered with Entellan (Sigma-
Aldrich, USA). They were then visualized under a light mi-
croscope (AX-70 Olympus, Japan) at 400 × magnification,
and cell counting was performed using an imaging soft-
ware along a length of 400 µm in the hippocampal CA1 re-
gion. Only irregular and dark cells with unidentifiable nu-
cleus and nucleolus were counted as dead cells.

RNA extraction
RNA extraction from the tissue was performed in all

groups, according to the manufacturer’s protocol (Qiagen,
Germany). Initially, 200 - 300 µL of Kiazol QIAzol (QIA-
GEN, Germany) was added to the hippocampal tissue and
kept at -80°C for 24 hours. After 24 hours, the plaque in
the Cryotube was crushed in a semi-frozen state with a mi-
cropipette and pipetted slowly. Next, about 100 µL of chlo-
roform was added to the sample to lyse the cells; the solu-
tion was left in contact with the cells for about one minute
and then centrifuged at 12,000 rpm for 10 minutes.

After centrifugation, 1 mL of isopropanol was poured
onto transparent RNA and stirred for one minute. The sam-
ples were then centrifuged at 12,000 rpm for 10 minutes.
Next, the supernatant was discarded, and 1 mL of 70% al-
cohol was added. After vortexing, the mixture was cen-
trifuged at 7,500 rpm for 10 minutes. The supernatant was
discarded with a sampler, and the plaque was dried in a mi-
crotube. To dissolve RNA, 20 µL of distilled water (60°C)
was poured onto the plaque in the microtube. It was then
pipetted slowly and placed on a 60°C plate for five minutes.
The extracted RNA was stored at -80°C until further use.

3.7. cDNA synthesis

After extraction of high-purity RNA from all samples,
cDNA synthesis was performed according to the manufac-
turer’s protocol (Fermentas, USA). For reverse transcrip-
tion reactions, all primers designed for the genes were an-
alyzed, and gene expression analysis was performed by
a quantitative real-time polymerase chain reaction (qRT-
PCR) assay. The expression ratio of genes was also evaluated
by the comparative CT method (∆∆CT) (29) (Table 1).

Table 1. The Sequences of Primers Used in the Present Study

Genes Primer Sequences

IL-6
Forward: AGGCAGAGTCATTCAGAGC

Reverse: CATTGGTAGTTGGGGTAGGA

Glutamate
Forward: TCCTCCCTCTCATCATTTCCA

Reverse: CAGGATGACCCCCATCACA

NGF
Forward: GCC TGT TTG TCG TCT GTT GT

Reverse: GCC CCG AAT CCT GTA GAG AG

A2A
Forward: TCT AAA TGC TGG GAG GTC AA

Reverse: CTC ACG GTG GTC CTT TGT TG

GAPDH
Forward: CAT ACT CAG CAC CAG CAT CAC C

Reverse: AAG TTC AAC GGC ACA GTC AAG G

3.8. Statistical Analysis

Data are reported as mean and standard deviation (SD).
Shapiro-Wilk test was performed in SPSS Version 16.0 for
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Windows (SPSS Inc., USA) to verify the normal distribution
of data. One-way ANOVA test was also used to compare dif-
ferences between the groups, followed by Bonferroni post-
hoc correction test if there was a significant difference. The
significance level was set at P ≤ 0.05. Also, to estimate the
sample size of this experimental study, previous studies
were used to find if the intervention was effective. The sam-
ple size was calculated using G*Power software.

3.9. Ethical Statement

This study was performed according to the guide for
the care and use of laboratory animals, published by the US
National Institutes of Health (NIH Publication No.: 85–23,
revised in 1996). The study protocol was also approved by
the local ethics committee (IR.IAU.SRB.REC.1397, 134). All ef-
forts were made to minimize animal suffering and reduce
the number of animals used.

4. Results

4.1. Cell Death

Based on the results, endurance training precondition-
ing reduced ischemia/reperfusion-induced cell death in
the CA1 region of the hippocampus. The Nissl staining re-
vealed that in the CA1 region, ischemia led to the irregular
shape and dark color of the cells, with their nucleus and
nucleolus frequently unrecognizable, which is indicative
of necrotic cell death (Figure 1). Cell death in the CA1 re-
gion was more significant in group 2 compared to group
1, as 93% of the cells were necrotic (P < 0.05). Based on the
results, the number of necrotic neurons in group 3, group
4, and group 5 decreased significantly compared to group
2 (P < 0.05 for all).

4.2. Gene Expression

The relative expression of IL-6 gene was significantly
different between the groups. The IL-6 gene expression de-
creased in group 3, group 4, and group 5 by 8136, 1077, and
13 folds, respectively, compared to group 2 (P < 0.05 for all).
The relative expression of glutamate gene also decreased
in group 3, group 4, and group 5 by 19, 12, and four folds,
respectively, compared to group 2 (P < 0.05 for all). On the
other hand, the relative expression of NGF gene increased
by seven, four, and two folds in group 3, group 4, and group
5, respectively, compared to group 2 (P < 0.05 for all). Fi-
nally, the relative expression of A2A gene increased by six
and three folds in group 3 and group 4, respectively, com-
pared to group 2 (P < 0.05 for all) (Figure 2).

5. Discussion

According to the present study, after 45 minutes of
cerebral ischemia/reperfusion, 93% of hippocampal CA1
cells were necrotic. Presumably, this cell death is associ-
ated with excessive glutamate release and excitotoxicity
by overactivation of receptors, to which the hippocampus
is particularly vulnerable (12). Besides, inflammatory fac-
tors, such as IL-6 and tumor necrosis factor-α (TNF-α), po-
tentially contribute to ischemia-induced neuronal death,
as increased inflammatory cytokine release commonly oc-
curs in stroke and brain injury (4). In the present study, glu-
tamate and IL-6 gene expression significantly increased in
group 2.

The lack of effective therapies for stroke patients, de-
spite promising preclinical findings, has prompted exten-
sive investigations of molecular pathways linked to cell
death (30). Adverse responses to inflammatory mediators
in various stages after ischemia can explain the failure of
clinical strategies (31). Endurance training represents an
effective preventive, and even partially therapeutic strat-
egy, by reducing the risk factors and protecting neurons
against ischemia/reperfusion injury (32). Moreover, it has
been reported that endurance training produces endoge-
nous neuroprotective effects that will promote neuronal
survival following an ischemia-induced damage (18, 19).

Studies have shown that endurance training precon-
ditioning can decrease glutamate release and overexpres-
sion of glutamate receptors, leading to excitotoxicity resis-
tance and reduced post-stroke brain injury (20). It has been
also shown that preconditioning with endurance training
increases the expression of glutamate transporters, which
in turn reduces cell death following cerebral ischemia by
increasing glutamate re-uptake and clearance (33). In line
with previous findings, the present study showed that
endurance training preconditioning significantly dimin-
ished glutamate gene expression.

The glutamate gene expression and cell death signif-
icantly reduced in the endurance training group, as well
as adenosine infusion and endurance training/adenosine
infusion/ischemia groups. In another study, a signifi-
cant and rapid increase in the level of adenosine after is-
chemia/reperfusion attracted the researchers’ attention to
this purine for therapeutic use (34). Adenosine is an en-
dogenous neural regulator with neuroprotective proper-
ties by regulating cell proliferation and survival. Moreover,
adenosine may limit cell death through inhibition and re-
duction of molecular events, such as reduced glutamate re-
lease and inhibition of inflammatory responses (35). In the
present study, the Nissl staining showed that adenosine in-
jection significantly reduced ischemia-induced cell death
in the hippocampal CA1 neurons.

The present study revealed that endurance training
and adenosine infusion, either alone or in combination,
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Figure 1. I, cresyl violet staining of the hippocampal CA1 region; A, non-lesion control group; B, ischemia only group; C, endurance training (ET) + ischemia group; D, adenosine
+ ischemia group; E, endurance training (ET) + adenosine + ischemia group. The ischemic lesion induced a significant rate of necrotic cell death. Note that endurance training
and adenosine alone or in combination visibly reduced the rate of cell death (400x magnification); II, comparison of mean percentage of necrotic cells in the hippocampal
CA1 region. All groups except for the controls received a transient cerebral ischemic lesion induced by common carotid artery occlusion. Note that cell death was significantly
reduced by exercise and adenosine alone, and synergistic effects of both treatments slightly attenuated their benefit [symbols indicate significances: * significant difference
compared to untreated controls group (P < 0.05); # significant difference compared to ischemia only group (P < 0.05)].

significantly decreased the expression of IL-6 compared to
the ischemia group. Recently, Chio et al. (2017) argued that
the role of endurance training preconditioning in modu-
lating inflammatory responses after ischemic injury was
not well understood (36). Cross-sectional studies have sug-
gested that regular endurance training plays a protective
role against inflammatory diseases (37). This effective pro-
tection may result from the release of IL-6 (38), which can
play a neuroprotective role in brain ischemia by protect-
ing neurons and inhibiting glutamate release (39). It may
also trigger NGF secretion by stimulating astrocytes that
can improve the survival of neurons following a brain in-
jury (40).

Moreover, the level of NGF seems to increase in inflam-
matory and neuropathic pain states (41). Although, as pre-
viously stated, the dual role of IL-6 after a brain injury is
not well understood, methodological differences that af-
fect the dual role of this cytokine may be influential (42).
Nevertheless, the results of the present study showed the
significant effects of endurance training preconditioning,
adenosine infusion, and their combination on increasing

the level of NGF expression.

Previous studies have reported that adenosine reduces
glutamate gene expression from glial cells through adeno-
sine A2A receptors (15) and plays a protective role against
oxidative damage (43). Since adenosine production is de-
pendent on the amount of adenosine triphosphate (ATP)
catalysis, the level of adenosine increases under stress con-
ditions, such as endurance training or increased use of ATP
over time. It seems that adenosine plays an important role
in the complex adaptation of the body to endurance train-
ing; because of its rapid production, it is considered an
ideal molecular agent for many regulatory mechanisms
(44).

Besides, ischemic conditions increase the demand for
energy and cellular oxygen and subsequently, increase
adenosine levels with potentially protective effects (45).
However, the mechanisms of adenosine depend on its
effect on adenosine receptors, such as the strength and
amount of binding to receptors, which can also produce
various effects, because the A2A receptor, as one of the most
important adenosine receptors, has a wide distribution in
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Figure 2. Impact of endurance training pre-conditioning on IL-6, glutamate, NGF, and A2A gene expression. Impact of endurance training pre-conditioning on A, IL-6 (P < 0.05);
B, glutamate (P < 0.05); C, NGF (P < 0.05); and D, A2A gene expression (P < 0.05) after induction of ischemia in different groups. Note that, out of all therapies, endurance
training had the largest effect on gene expression patterns following ischemia, while adenosine increased expression of NGF and A2A and reduced expression of IL-6 and
glutamate genes. Synergistic effects were rather negligible. Symbols indicate significances [* significant difference compared ischemia only group (P < 0.05)].

the brain and regulates many physiological processes (17).
In the present study, cell death and A2A receptor expres-
sion increased in the adenosine infusion groups. How-
ever, its role in neurodegenerative processes is controver-
sial due to the activity of A2A receptor as a mediator of both
potential neuroprotective and neurotoxic effects. More re-
cent studies reported that activation of this receptor may
play a protective role against neurodegenerative diseases,
such as Alzheimer’s disease, Parkinson’s disease, and is-
chemia (46).

Additionally, A2A facilitates neurotransmitter and
synaptic transmission in the hippocampus (47). However,
there is insufficient information regarding the signaling
effects of endurance training on A2A in the brain tissue.
Recent studies have shown a close relationship between
A2A signaling and neurotrophic factor expression in
neurons, as interactions between A2A and neurotrophic
effects are effective in controlling the brain’s protective
responses to cerebral ischemia (48).

Considering the vital role of A2A receptors in improv-
ing the neurotrophic activity of the hippocampus (16), ty-
rosine kinase receptors activate specific signaling path-
ways, and regulate neuronal release by A2A expression
(39). The present study also showed that A2A expression
increased significantly, with a higher NGF expression in

adenosine-treated and endurance training groups. More-
over, A2A plays an important role in improving memory
and learning (49) and increasing the sensory-motor func-
tion by promoting the release of neurotransmitters (26).
One of the hallmarks of adenosine effect on target tissues
is activation of adenosine receptors. The present study re-
vealed that the protective effect of adenosine in the injured
hippocampus is related to the activation of A2A receptors,
resulting in decreased cell death factors and increased NGF
expression. However, further studies are needed to identify
the processes downstream the signaling cascade.

Some limitations of stroke models include the risk of
hemorrhagic events, moderate recanalization rates, and
hyper/hypothermia. Hypothalamic damage always occurs
in animal models of stroke, whereas it rarely occurs in hu-
man strokes. Also, hypothalamic ischemia produces a hy-
perthermic response in rats, which may affect further anal-
yses. Hypothalamic damage is also observed in rats af-
ter stroke; however, the surface/volume ratio of the dam-
aged hippocampus regions leads to temperature loss in
the postoperative period in rats.

5.1. Conclusion

The results of the present study indicated the most
significant reduction in inflammatory processes and neu-
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ronal growth in the group of endurance training alone.
Nevertheless, analysis of treatment with adenosine infu-
sion and adenosine infusion-exercise combination in the
experimental groups indicated the intensified effect of
adenosine-exercise combination on increasing neuronal
resistance and cell death.
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