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Abstract

Background: The reliable and easy-to-operate detection of hydrogen peroxide (H2O2) has attracted extensive attention in the fields
of biomedicine, food security, and environmental analysis.
Objectives: In this work, a novel electrochemical method was proposed for H2O2 monitoring using a carbon paste electrode (CPE)
modified with MnO2/sepiolite nanocomposite.
Methods: MnO2/sepiolite material was characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spec-
troscopy (EDS), and X-ray diffraction (XRD) technique. The modified CPE was employed for the amperometric monitoring of H2O2

in human serum samples.
Results: Electrochemical data showed that the MnO2/sepiolite-CPE displays a high peak current towards H2O2 oxidation. A linear
range from 5 to 700 µM and a low detection limit of 0.8 µM for H2O2 were obtained with the proposed sensor. Besides, the elec-
trode depicted excellent reproducibility and anti-interferant ability, promising the applicability of this electrochemical method in
practical analyses.
Conclusions: This work introduced a new and effective enzyme-less H2O2 sensor based on the MnO2/sepiolite nanocomposite mod-
ified CPE. The suggested sensor showed good sensitivity for the rapid detection of H2O2 in a wide linear range with a low detection
limit and satisfactory reproducibility, which made it practical for the analysis of hydrogen H2O2 in real samples.
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1. Background

H2O2 plays an essential mediator in several biologi-
cal reactions catalyzed by enzymes (1, 2). The excess of
H2O2 may potentially damage carbohydrates, lipids, and
proteins in the human body (3). Thus, it is crucial to de-
sign an efficient platform for H2O2 measurement in bio-
logical samples. So far, different determination schemes
have been used for H2O2 monitoring, such as chromatog-
raphy (4), spectrophotometry (5), chemiluminescence (6),
and electrochemistry (7).

Enzyme-less H2O2 electrochemical sensors have the ad-
vantage of simplicity, inexpensive, high sensitivity, rapid
response and suitability for real-time detection (8, 9). From
this point of view, the construction of new and effective
electrochemical assays for H2O2 detection, especially in bi-
ological samples, has received extensive attention in re-

cent years (10, 11).

2. Objectives

In this work, MnO2 nanoflakes were deposited on
the surface fibrous structure of sepiolite clay via a facile
hydrothermal process. The prepared nanocomposite
(MnO2/sepiolite) was employed for the modification of a
simple and low-cost carbon paste electrode (CPE). The elec-
trocatalytic activity of the modified CPE toward H2O2 was
explored. The linear detection range and detection limit
of the MnO2/sepiolite-CPE were also investigated in detail.
Furthermore, the fabricated non-enzymatic H2O2 electro-
chemical sensor was used for the determination of H2O2 in
human serum samples.
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3. Methods

3.1. Reagents and Instrument

Flake graphite (100 mesh, 99.5% purity), paraffin oil,
H2O2 (30 wt%), ammonium persulfate ((NH4)2S2O8, 99.0
purity), potassium permanganate (KMnO4, 99.5 purity),
disodium hydrogen phosphate dodecahydrate (Na2HPO4

12H2O, 99 purity), and sodium dihydrogen phosphate de-
hydrate (NaH2PO4 2H2O, 99 purity) were acquired from
Merck Co. (Darmstadt, Germany). Sepiolite powder was
provided by Dorkav Minig Co., Ltd. (Mashhad, Iran). Raw
sepiolite was purified according to a previously reported
method (12). Ultrapure water was used for the preparation
of phosphate buffer solution.

Electrochemical experiments were conducted on a Ori-
gaState100 electrochemical workstation (OrigaLys, France)
using a standard electrochemical cell, including the modi-
fied CPE as the working electrode, the platinum wire as the
counter electrode, and saturated calomel electrode (SCE)
as the reference electrode.

3.2. Synthesis of MnO2/Sepiolite Nanocomposite

MnO2/sepiolite nanocomposite was prepared via the
one-step hydrothermal method, described in an earlier re-
port (13). Briefly, 2.0 g of the purified sepiolite powder was
dispersed into a 30-mL mixed solution of (NH4)2S2O8 (2.21
g) and KMnO4 (1.85 g). This mixture was poured into a 50-
mL Tefon-lined stainless steel autoclave and then kept in an
oven at 110°C for 14 h. The achieved MnO2/sepiolite material
was collected and then washed repeatedly with ultrapure
water. The product was further dried in an oven at 60°C.

3.3. Electrode Fabrication

The working CPE electrode was prepared according
to the methods reported previously (14, 15). Typically,
materials, including flake graphite, paraffin oil, and
MnO2/sepiolite in the ratio of 67:25:8 (w/w), were mixed in a
mortar for 10 min to get a homogenized carbon paste. The
obtained paste was filled carefully into a Teflon tube (3 mm
inner diameter and a height of 10 cm) as the body of the
electrode. A copper wire was used as the electrical conduc-
tor. A fresh CPE surface was provided with polishing the
electrode surface on a weighing paper.

4. Results

X-ray diffraction patterns of the sepiolite and
MnO2/sepiolite samples are shown in Figures 1A and B.
The diffraction peaks appeared at 2θ = 7.7°, 19.6°, 20.7°,

26.5°, and 34.8° matched well with the diffraction peaks of
(110), (060), (131), (080), and (441) crystal planes of sepiolite
clay standard data (JCPDS card PDF file No. 13-0595) (16,
17). Two characteristic diffraction peaks at 37.2° and 66.3°
could also be assigned to the (131), and (421) planes of
γ-MnO2 (JCPDS 72-1982), respectively (18).
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Figure 1. X-ray diffraction patterns of A, sepiolite; and B, MnO2/sepiolite nanocom-
posite.

The TEM images of the natural sepiolite and
MnO2/sepiolite nanocomposite are shown in Figures
2A and B. As can be seen, MnO2 nanoflakes successfully
deposited on the surface of the sepiolite fibers. Moreover,
the EDS spectrum of the MnO2/sepiolite nanocomposite
(Figure 3) depicts the existence of Mn, O, Si, and Mg and
elements in the prepared material. All the above results
confirm the synthesis of MnO2/sepiolite nanocomposite
via the hydrothermal method.

5. Discussion

The electrochemical performances of unmodified CPE
and MnO2/sepiolite-CPE toward H2O2 were studied by
cyclic voltammetry. As presented in Figure 4, the oxi-
dation peak current for MnO2/sepiolite-CPE (appeared at
0.45 V) was much larger than that of the unmodified
CPE, which is ascribed to the remarkable catalytic ability
of MnO2/sepiolite material toward H2O2 oxidation on the
electrode surface.

The influence of solution pH was explored on the
voltammetric peak current at the MnO2/sepiolite-CPE. As
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Figure 2. SEM images A, sepiolite; and B, MnO2/sepiolite nanocomposite.
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Figure 3. EDS spectrum of MnO2/sepiolite nanocomposite

seen in Figure 5A, the voltammetric signals first increased
with increasing pH up to 7.0, and then decreased at higher
pH values. Thus, the pH 7.0 of phosphate buffer was se-
lected for the following electrochemical tests.

The effect of MnO2/sepiolite dose on the range of 4.0 -
12.0% (w/w) was studied by the voltammetric method in a
solution containing 100 µM of H2O2. As shown in Figure
5B, the maximum response can be observed at the amount
of 8.0% MnO2/sepiolite. Consequently, it was chosen as the
optimal modifier amount in the next experiments.

To assess the sensitive response towards H2O2, the
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Figure 4. Cyclic voltammograms of the unmodified and modified electrodes in 0.1
M pH = 7 phosphate buffer at 100 µM of H2O2 , scan rate: 50 mV.s-1 .

current-time (I–t) curve was explored at an applied po-
tential of 0.5 V. The amperometric responses of the
MnO2/sepiolite-CPE with the successive injection of H2O2

into 0.1-M buffer solution (pH 7.0) were investigated, and
the results are depicted in Figure 6. The linear relationship
between amperometric signal current and analyte concen-
tration in the range of 5 - 700 µM could be observed. Fur-
thermore, the limit of detection (based on 3σ) was found
to be 0.8 µM, which was less than that of other meth-
ods (19-24) as listed in Table 1. Besides, the relative stan-
dard deviation (RSD) for ten replicate detections of 50 µM
H2O2 was calculated as 2.6%. It was also noticed that the
MnO2/sepiolite-CPE showed good stability and could be
used for at least two weeks. The influence of common in-
terfering species on the determination of 50 µM H2O2 us-
ing the MnO2/sepiolite-CPE was evaluated. As listed in Ta-
ble 2, the 10-fold concentration of interfering molecules
demonstrated nearly no interference in H2O2 monitoring.
This finding indicated the satisfactory selectivity of the
suggested assay.

The practical applications of the MnO2/sepiolite-CPE in
analysis of H2O2 in human serum samples were studied us-
ing the standard addition method. Real samples were pro-
vided from a local hospital in Tehran. The obtained results
and recoveries of the spiked samples are exhibited in Ta-
ble 3. These results showed that the present system is an
effective platform for the monitoring of H2O2 in real appli-
cations.
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Figure 5. The effect of A, pH; and B, MnO2/sepiolite amount on voltammetric current response at MnO2/sepiolite-CPE in phosphate buffer (0.1 M) containing 100 µM of H2O2 .

Table 1. Comparative Study of Various Electrochemical Sensors for H2O2 Detection

Electrode Modifier* Linear Range (µM) Detection Limit (µM) Ref.

MnO2 nanotubes/reduced graphene oxide nanocomposite 100 - 30000 1.29 (19)

V2O5 /VO2 nanostructures 8 - 215 5 (20)

Cuprous oxide-reduced graphene oxide nanocomposites 30 - 12800 21.7 (21)

Poly(p-aminobenzene sulfonic acid) 50 - 550 10 (22)

Hematite nanoparticles 50 - 3145 22 (23)

Gold nanobipyramids/multi-walled carbon nanotubes 5.0 - 47300 1.5 (24)

MnO2 /sepiolite nanocomposite 5 - 700 0.8 This work
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Figure 6. Amperometric current–time curve of MnO2/sepiolite-CPE to consecutive
addition a series of concentration (5.0 to 700.0 µM) of H2O2 into 0.1 M buffer solu-
tion (pH = 7.0) at an applied potential of 0.5 V (Inset: calibration plot of sensor).

Table 2. Effects of Interfering Species on H2O2 Detection

Foreign Molecule Recovery (%)

Sucrose 97.9

Citric acid 98.0

Glucose 97.7

Ascorbic acid 97.2

Glutamic acid 98.6

5.1. Conclusion

In sum, a simple, selective, and sensitive electro-
chemical device for H2O2 determination was proposed.
The MnO2/sepiolite-CPE showed a good linear relationship
with the concentration of H2O2 up to 700 µM. Moreover,
the suggested method showed notable selectivity for the
measuring of H2O2 in the presence of some interfering
species. In addition, MnO2/sepiolite-CPE demonstrated
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Table 3. H2O2 Detection in Human Serum Samples

Sample Spiked (µM) Found (µM) Recovery (%) RSD a

Human serum (1)

10 9.8 98.0 3.5

20 20.3 101.5 4.1

30 29.4 102.0 3.4

Human serum (2)

10 10.3 103.0 3.5

20 19.7 98.5 4.2

30 28.9 96.3 4.0
a n = 3.

great potential application for H2O2 monitoring in real bi-
ological samples.
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